Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data
Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunt...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2024-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nature biotechnology |
container_volume | |
creator | Yuan, Qiuyue Duren, Zhana |
description | Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies. |
doi_str_mv | 10.1038/s41587-024-02182-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038438420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038438420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmPwBzigHLkEkiZN0iOa-Jg0iQuco7R1p0LajiQV7N-TbgPJli2_ry3rQeia0TtGub4PguVaEZqJlExnRJ2gOcuFJEwW8jT1dJJZLmfoIoQPSqkUUp6jGdeSFoqJObKrvgHv236DN9AD9rAZnY2D3-Ee4vfgPwNu_NDhkCwOSAXO4W50sR06wLWNFo-ThG10NpBQWQcYfiL43rq9fonOGusCXB3rAr0_Pb4tX8j69Xm1fFiTigsViWJaNdxypvKGlbyWTGS5yjOlC0qrjJdNqYUUouRpllvNCs6KQhcSdFEr0HyBbg93t374GiFE07Vhetf2MIzB8IRMpMhosmYHa-WHEDw0ZuvbzvqdYdRMaM0BrUlozR6tUWnp5nh_LDuo_1f-WPJfmgpz9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038438420</pqid></control><display><type>article</type><title>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yuan, Qiuyue ; Duren, Zhana</creator><creatorcontrib>Yuan, Qiuyue ; Duren, Zhana</creatorcontrib><description>Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-024-02182-7</identifier><identifier>PMID: 38609714</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature biotechnology, 2024-04</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</citedby><cites>FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</cites><orcidid>0000-0003-4685-811X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38609714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Qiuyue</creatorcontrib><creatorcontrib>Duren, Zhana</creatorcontrib><title>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><description>Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.</description><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmPwBzigHLkEkiZN0iOa-Jg0iQuco7R1p0LajiQV7N-TbgPJli2_ry3rQeia0TtGub4PguVaEZqJlExnRJ2gOcuFJEwW8jT1dJJZLmfoIoQPSqkUUp6jGdeSFoqJObKrvgHv236DN9AD9rAZnY2D3-Ee4vfgPwNu_NDhkCwOSAXO4W50sR06wLWNFo-ThG10NpBQWQcYfiL43rq9fonOGusCXB3rAr0_Pb4tX8j69Xm1fFiTigsViWJaNdxypvKGlbyWTGS5yjOlC0qrjJdNqYUUouRpllvNCs6KQhcSdFEr0HyBbg93t374GiFE07Vhetf2MIzB8IRMpMhosmYHa-WHEDw0ZuvbzvqdYdRMaM0BrUlozR6tUWnp5nh_LDuo_1f-WPJfmgpz9A</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>Yuan, Qiuyue</creator><creator>Duren, Zhana</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4685-811X</orcidid></search><sort><creationdate>20240412</creationdate><title>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</title><author>Yuan, Qiuyue ; Duren, Zhana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qiuyue</creatorcontrib><creatorcontrib>Duren, Zhana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qiuyue</au><au>Duren, Zhana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</atitle><jtitle>Nature biotechnology</jtitle><addtitle>Nat Biotechnol</addtitle><date>2024-04-12</date><risdate>2024</risdate><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.</abstract><cop>United States</cop><pmid>38609714</pmid><doi>10.1038/s41587-024-02182-7</doi><orcidid>https://orcid.org/0000-0003-4685-811X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2024-04 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038438420 |
source | Nature; SpringerLink Journals - AutoHoldings |
title | Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20gene%20regulatory%20networks%20from%20single-cell%20multiome%20data%20using%20atlas-scale%20external%20data&rft.jtitle=Nature%20biotechnology&rft.au=Yuan,%20Qiuyue&rft.date=2024-04-12&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-024-02182-7&rft_dat=%3Cproquest_cross%3E3038438420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038438420&rft_id=info:pmid/38609714&rfr_iscdi=true |