Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data

Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-04
Hauptverfasser: Yuan, Qiuyue, Duren, Zhana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature biotechnology
container_volume
creator Yuan, Qiuyue
Duren, Zhana
description Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.
doi_str_mv 10.1038/s41587-024-02182-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038438420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038438420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYmPwBzigHLkEkiZN0iOa-Jg0iQuco7R1p0LajiQV7N-TbgPJli2_ry3rQeia0TtGub4PguVaEZqJlExnRJ2gOcuFJEwW8jT1dJJZLmfoIoQPSqkUUp6jGdeSFoqJObKrvgHv236DN9AD9rAZnY2D3-Ee4vfgPwNu_NDhkCwOSAXO4W50sR06wLWNFo-ThG10NpBQWQcYfiL43rq9fonOGusCXB3rAr0_Pb4tX8j69Xm1fFiTigsViWJaNdxypvKGlbyWTGS5yjOlC0qrjJdNqYUUouRpllvNCs6KQhcSdFEr0HyBbg93t374GiFE07Vhetf2MIzB8IRMpMhosmYHa-WHEDw0ZuvbzvqdYdRMaM0BrUlozR6tUWnp5nh_LDuo_1f-WPJfmgpz9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038438420</pqid></control><display><type>article</type><title>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yuan, Qiuyue ; Duren, Zhana</creator><creatorcontrib>Yuan, Qiuyue ; Duren, Zhana</creatorcontrib><description>Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-024-02182-7</identifier><identifier>PMID: 38609714</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature biotechnology, 2024-04</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</citedby><cites>FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</cites><orcidid>0000-0003-4685-811X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38609714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Qiuyue</creatorcontrib><creatorcontrib>Duren, Zhana</creatorcontrib><title>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><description>Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.</description><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYmPwBzigHLkEkiZN0iOa-Jg0iQuco7R1p0LajiQV7N-TbgPJli2_ry3rQeia0TtGub4PguVaEZqJlExnRJ2gOcuFJEwW8jT1dJJZLmfoIoQPSqkUUp6jGdeSFoqJObKrvgHv236DN9AD9rAZnY2D3-Ee4vfgPwNu_NDhkCwOSAXO4W50sR06wLWNFo-ThG10NpBQWQcYfiL43rq9fonOGusCXB3rAr0_Pb4tX8j69Xm1fFiTigsViWJaNdxypvKGlbyWTGS5yjOlC0qrjJdNqYUUouRpllvNCs6KQhcSdFEr0HyBbg93t374GiFE07Vhetf2MIzB8IRMpMhosmYHa-WHEDw0ZuvbzvqdYdRMaM0BrUlozR6tUWnp5nh_LDuo_1f-WPJfmgpz9A</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>Yuan, Qiuyue</creator><creator>Duren, Zhana</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4685-811X</orcidid></search><sort><creationdate>20240412</creationdate><title>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</title><author>Yuan, Qiuyue ; Duren, Zhana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-7187f3a3175f1b3d6142575278900c23bfb84644b35275a8193199896e89d7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Qiuyue</creatorcontrib><creatorcontrib>Duren, Zhana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Qiuyue</au><au>Duren, Zhana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data</atitle><jtitle>Nature biotechnology</jtitle><addtitle>Nat Biotechnol</addtitle><date>2024-04-12</date><risdate>2024</risdate><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.</abstract><cop>United States</cop><pmid>38609714</pmid><doi>10.1038/s41587-024-02182-7</doi><orcidid>https://orcid.org/0000-0003-4685-811X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2024-04
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_proquest_miscellaneous_3038438420
source Nature; SpringerLink Journals - AutoHoldings
title Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20gene%20regulatory%20networks%20from%20single-cell%20multiome%20data%20using%20atlas-scale%20external%20data&rft.jtitle=Nature%20biotechnology&rft.au=Yuan,%20Qiuyue&rft.date=2024-04-12&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-024-02182-7&rft_dat=%3Cproquest_cross%3E3038438420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038438420&rft_id=info:pmid/38609714&rfr_iscdi=true