Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO42– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling
Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-04, Vol.58 (16), p.7176-7185 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7185 |
---|---|
container_issue | 16 |
container_start_page | 7176 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Ma, Xu Yuan, Zidan Lin, Jinru Cui, Yubo Wang, Shaofeng Pan, Yuanming Chernikov, Roman Cheung, Leo Ka Long Deevsalar, Reza Jia, Yongfeng |
description | Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling. |
doi_str_mv | 10.1021/acs.est.4c01235 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038437068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153550832</sourcerecordid><originalsourceid>FETCH-LOGICAL-p942-eb601ef8f2ffab3ec9580d497c11e6ea478e2d848ed60b76a4df09e93d35f5a83</originalsourceid><addsrcrecordid>eNqFkL-OEzEQxi0EEuGgprVEE4oN438bL10UyGWloBSJEN3J8Y4Pn3a9wd4tQsU78Eo8yT3JOQkVDdU3M_r0-2aGkLcMZgw4-2BsmmEaZtIC40I9IxOmOBRKK_acTACYKCpRfntJXqX0AABcgJ6QP5vempbuhjjaYYxITWjoMp7SYNrW_zSD7wPdRxOS62N3bXtH16cm9mOiK4zRW7qICYMZkPpAF9Y3ebTm28dfv1c4rev6fa4Wafr1rLut5FnoLkdglz7Suju23l7IieaQC4B-8QHpp2h8MPfXpS4ZGXyLvf2OnT-vvTzZ1of71-SFM23CN3_1huxXn_fLdbHZ3tbLxaY4VpIXeCiBodOOO2cOAm2lNDSymlvGsEQj5xp5o6XGpoTDvDSycVBhJRqhnDJa3JDpFXuM_Y8x__qu88li25qA-Rl3gimhFGjB_28FoaWYQ3mmvvvH-tCPMeQ7skuWmkteVeIJbwGaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046824299</pqid></control><display><type>article</type><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO42– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><source>ACS Publications</source><creator>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Cheung, Leo Ka Long ; Deevsalar, Reza ; Jia, Yongfeng</creator><creatorcontrib>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Cheung, Leo Ka Long ; Deevsalar, Reza ; Jia, Yongfeng</creatorcontrib><description>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c01235</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Absorption ; Acid mine drainage ; Arsenates ; Arsenic ; Atomic structure ; Crystallization ; Cycles ; electron microscopy ; Fine structure ; Geochemistry ; Iron ; Metastable phases ; Mine drainage ; Protonation ; Ripening ; Scanning electron microscopy ; Structural forms ; technology ; thermodynamics ; Ultrastructure ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Environmental science & technology, 2024-04, Vol.58 (16), p.7176-7185</ispartof><rights>Copyright American Chemical Society Apr 23, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Yuan, Zidan</creatorcontrib><creatorcontrib>Lin, Jinru</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>Wang, Shaofeng</creatorcontrib><creatorcontrib>Pan, Yuanming</creatorcontrib><creatorcontrib>Chernikov, Roman</creatorcontrib><creatorcontrib>Cheung, Leo Ka Long</creatorcontrib><creatorcontrib>Deevsalar, Reza</creatorcontrib><creatorcontrib>Jia, Yongfeng</creatorcontrib><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO42– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><title>Environmental science & technology</title><description>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</description><subject>Absorption</subject><subject>Acid mine drainage</subject><subject>Arsenates</subject><subject>Arsenic</subject><subject>Atomic structure</subject><subject>Crystallization</subject><subject>Cycles</subject><subject>electron microscopy</subject><subject>Fine structure</subject><subject>Geochemistry</subject><subject>Iron</subject><subject>Metastable phases</subject><subject>Mine drainage</subject><subject>Protonation</subject><subject>Ripening</subject><subject>Scanning electron microscopy</subject><subject>Structural forms</subject><subject>technology</subject><subject>thermodynamics</subject><subject>Ultrastructure</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL-OEzEQxi0EEuGgprVEE4oN438bL10UyGWloBSJEN3J8Y4Pn3a9wd4tQsU78Eo8yT3JOQkVDdU3M_r0-2aGkLcMZgw4-2BsmmEaZtIC40I9IxOmOBRKK_acTACYKCpRfntJXqX0AABcgJ6QP5vempbuhjjaYYxITWjoMp7SYNrW_zSD7wPdRxOS62N3bXtH16cm9mOiK4zRW7qICYMZkPpAF9Y3ebTm28dfv1c4rev6fa4Wafr1rLut5FnoLkdglz7Suju23l7IieaQC4B-8QHpp2h8MPfXpS4ZGXyLvf2OnT-vvTzZ1of71-SFM23CN3_1huxXn_fLdbHZ3tbLxaY4VpIXeCiBodOOO2cOAm2lNDSymlvGsEQj5xp5o6XGpoTDvDSycVBhJRqhnDJa3JDpFXuM_Y8x__qu88li25qA-Rl3gimhFGjB_28FoaWYQ3mmvvvH-tCPMeQ7skuWmkteVeIJbwGaKQ</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Ma, Xu</creator><creator>Yuan, Zidan</creator><creator>Lin, Jinru</creator><creator>Cui, Yubo</creator><creator>Wang, Shaofeng</creator><creator>Pan, Yuanming</creator><creator>Chernikov, Roman</creator><creator>Cheung, Leo Ka Long</creator><creator>Deevsalar, Reza</creator><creator>Jia, Yongfeng</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240423</creationdate><title>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO42– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</title><author>Ma, Xu ; Yuan, Zidan ; Lin, Jinru ; Cui, Yubo ; Wang, Shaofeng ; Pan, Yuanming ; Chernikov, Roman ; Cheung, Leo Ka Long ; Deevsalar, Reza ; Jia, Yongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p942-eb601ef8f2ffab3ec9580d497c11e6ea478e2d848ed60b76a4df09e93d35f5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Acid mine drainage</topic><topic>Arsenates</topic><topic>Arsenic</topic><topic>Atomic structure</topic><topic>Crystallization</topic><topic>Cycles</topic><topic>electron microscopy</topic><topic>Fine structure</topic><topic>Geochemistry</topic><topic>Iron</topic><topic>Metastable phases</topic><topic>Mine drainage</topic><topic>Protonation</topic><topic>Ripening</topic><topic>Scanning electron microscopy</topic><topic>Structural forms</topic><topic>technology</topic><topic>thermodynamics</topic><topic>Ultrastructure</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xu</creatorcontrib><creatorcontrib>Yuan, Zidan</creatorcontrib><creatorcontrib>Lin, Jinru</creatorcontrib><creatorcontrib>Cui, Yubo</creatorcontrib><creatorcontrib>Wang, Shaofeng</creatorcontrib><creatorcontrib>Pan, Yuanming</creatorcontrib><creatorcontrib>Chernikov, Roman</creatorcontrib><creatorcontrib>Cheung, Leo Ka Long</creatorcontrib><creatorcontrib>Deevsalar, Reza</creatorcontrib><creatorcontrib>Jia, Yongfeng</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xu</au><au>Yuan, Zidan</au><au>Lin, Jinru</au><au>Cui, Yubo</au><au>Wang, Shaofeng</au><au>Pan, Yuanming</au><au>Chernikov, Roman</au><au>Cheung, Leo Ka Long</au><au>Deevsalar, Reza</au><au>Jia, Yongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO42– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling</atitle><jtitle>Environmental science & technology</jtitle><date>2024-04-23</date><risdate>2024</risdate><volume>58</volume><issue>16</issue><spage>7176</spage><epage>7185</epage><pages>7176-7185</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c01235</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-04, Vol.58 (16), p.7176-7185 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038437068 |
source | ACS Publications |
subjects | Absorption Acid mine drainage Arsenates Arsenic Atomic structure Crystallization Cycles electron microscopy Fine structure Geochemistry Iron Metastable phases Mine drainage Protonation Ripening Scanning electron microscopy Structural forms technology thermodynamics Ultrastructure X ray absorption X-ray absorption spectroscopy |
title | Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O–Fe(III)–As(V)–SO42– Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Structure%20and%20Crystallization%20Transformation%20of%20Hydrous%20Ferric%20Arsenate%20in%20Acidic%20H2O%E2%80%93Fe(III)%E2%80%93As(V)%E2%80%93SO42%E2%80%93%20Systems:%20Implications%20for%20Acid%20Mine%20Drainage%20and%20Arsenic%20Geochemical%20Cycling&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Ma,%20Xu&rft.date=2024-04-23&rft.volume=58&rft.issue=16&rft.spage=7176&rft.epage=7185&rft.pages=7176-7185&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c01235&rft_dat=%3Cproquest%3E3153550832%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046824299&rft_id=info:pmid/&rfr_iscdi=true |