Temperature-dependent excitonic emission characteristics of highly crystallized carbon nitride nanosheets

Highly-crystallized carbon nitride (HCCN) nanosheets exhibit significant potential for advancements in the field of photoelectric conversion. However, to fully exploit their potential, a thorough understanding of fundamental excitonic photophysical processes is crucial. Here, the temperature-depende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2024-07, Vol.35 (30), p.305702
Hauptverfasser: Wang, Yue, Zhang, Guodi, Zhao, Min, Qi, Hongbo, Gao, Tianqi, An, Limin, Sun, Jianhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 30
container_start_page 305702
container_title Nanotechnology
container_volume 35
creator Wang, Yue
Zhang, Guodi
Zhao, Min
Qi, Hongbo
Gao, Tianqi
An, Limin
Sun, Jianhui
description Highly-crystallized carbon nitride (HCCN) nanosheets exhibit significant potential for advancements in the field of photoelectric conversion. However, to fully exploit their potential, a thorough understanding of fundamental excitonic photophysical processes is crucial. Here, the temperature-dependent excitonic photoluminescence (PL) of HCCN nanosheets and amorphous polymeric carbon nitride (PCN) is investigated using steady-state and time-resolved PL spectroscopy. The exciton binding energy of HCCN is determined to be 109.26 meV, lower than that of PCN (207.39 meV), which is attributed to the ordered stacking structure of HCCN with a weaker Coulomb interaction between electrons and holes. As the temperature increases, a noticeable reduction in PL lifetime is observed on both the HCCN and PCN, which is ascribed to the thermal activation of carrier trapping by the enhanced electron-phonon coupling effect. The thermal activation energy of HCCN is determined to be 102.9 meV, close to the value of PCN, due to their same band structures. Through wavelength-dependent PL dynamics analysis, we have identified the PL emission of HCCN as deriving from the transitions: σ*-LP, π*-π, and π*-LP, where the π*-LP transition dominants the emission because of the high excited state density of the LP state. These results demonstrate the impact of high-crystallinity on the excitonic emission of HCCN materials, thereby expanding their potential applications in the field of photoelectric conversion.&#xD.
doi_str_mv 10.1088/1361-6528/ad3d63
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038428595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038428595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5cf4d473ce96c90a8a59ba1e140e49a2eb34425cac0c58eb23aa10891de1c8373</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpaLZp7z0VH1uoE8mSvPKxhH5BoJfkLMajcVfBK7mSDN38-mjZNKcWBgaGZ2Z4H8beCX4puDFXQvai7XVnrsBJ18sXbPM8esk2fNDbVimjztnrnO85F8J04hU7l6bnSmixYf6W9gslKGui1tFCwVEoDf1BX2Lw2NDe5-xjaHAHCbBQ8rl4zE2cmp3_tZsPDaZDLjDP_oFcg5DGSgdfknfUBAgx74hKfsPOJpgzvX3qF-zu65fb6-_tzc9vP64_37Qoe11ajZNyaiuRhh4HDgb0MIIgoTipAToapVKdRkCO2tDYSYDqYhCOBBq5lRfsw-nukuLvlXKxNQHSPEOguGYruTSqM3rQFeUnFFPMOdFkl-T3kA5WcHsUbI827dGmPQmuK--frq_jntzzwl-jFfh4Anxc7H1cU6hh7VGDlbo-r6W3vLOLmyr76R_sf38_AuDslTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038428595</pqid></control><display><type>article</type><title>Temperature-dependent excitonic emission characteristics of highly crystallized carbon nitride nanosheets</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Yue ; Zhang, Guodi ; Zhao, Min ; Qi, Hongbo ; Gao, Tianqi ; An, Limin ; Sun, Jianhui</creator><creatorcontrib>Wang, Yue ; Zhang, Guodi ; Zhao, Min ; Qi, Hongbo ; Gao, Tianqi ; An, Limin ; Sun, Jianhui</creatorcontrib><description>Highly-crystallized carbon nitride (HCCN) nanosheets exhibit significant potential for advancements in the field of photoelectric conversion. However, to fully exploit their potential, a thorough understanding of fundamental excitonic photophysical processes is crucial. Here, the temperature-dependent excitonic photoluminescence (PL) of HCCN nanosheets and amorphous polymeric carbon nitride (PCN) is investigated using steady-state and time-resolved PL spectroscopy. The exciton binding energy of HCCN is determined to be 109.26 meV, lower than that of PCN (207.39 meV), which is attributed to the ordered stacking structure of HCCN with a weaker Coulomb interaction between electrons and holes. As the temperature increases, a noticeable reduction in PL lifetime is observed on both the HCCN and PCN, which is ascribed to the thermal activation of carrier trapping by the enhanced electron-phonon coupling effect. The thermal activation energy of HCCN is determined to be 102.9 meV, close to the value of PCN, due to their same band structures. Through wavelength-dependent PL dynamics analysis, we have identified the PL emission of HCCN as deriving from the transitions: σ*-LP, π*-π, and π*-LP, where the π*-LP transition dominants the emission because of the high excited state density of the LP state. These results demonstrate the impact of high-crystallinity on the excitonic emission of HCCN materials, thereby expanding their potential applications in the field of photoelectric conversion.&amp;#xD.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad3d63</identifier><identifier>PMID: 38604151</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>carbon nitride ; excitonic emission ; high crystallinity ; temperature dependence ; time-resolved spectroscopy</subject><ispartof>Nanotechnology, 2024-07, Vol.35 (30), p.305702</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-5cf4d473ce96c90a8a59ba1e140e49a2eb34425cac0c58eb23aa10891de1c8373</cites><orcidid>0000-0001-9460-3512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ad3d63/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38604151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Zhang, Guodi</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Qi, Hongbo</creatorcontrib><creatorcontrib>Gao, Tianqi</creatorcontrib><creatorcontrib>An, Limin</creatorcontrib><creatorcontrib>Sun, Jianhui</creatorcontrib><title>Temperature-dependent excitonic emission characteristics of highly crystallized carbon nitride nanosheets</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Highly-crystallized carbon nitride (HCCN) nanosheets exhibit significant potential for advancements in the field of photoelectric conversion. However, to fully exploit their potential, a thorough understanding of fundamental excitonic photophysical processes is crucial. Here, the temperature-dependent excitonic photoluminescence (PL) of HCCN nanosheets and amorphous polymeric carbon nitride (PCN) is investigated using steady-state and time-resolved PL spectroscopy. The exciton binding energy of HCCN is determined to be 109.26 meV, lower than that of PCN (207.39 meV), which is attributed to the ordered stacking structure of HCCN with a weaker Coulomb interaction between electrons and holes. As the temperature increases, a noticeable reduction in PL lifetime is observed on both the HCCN and PCN, which is ascribed to the thermal activation of carrier trapping by the enhanced electron-phonon coupling effect. The thermal activation energy of HCCN is determined to be 102.9 meV, close to the value of PCN, due to their same band structures. Through wavelength-dependent PL dynamics analysis, we have identified the PL emission of HCCN as deriving from the transitions: σ*-LP, π*-π, and π*-LP, where the π*-LP transition dominants the emission because of the high excited state density of the LP state. These results demonstrate the impact of high-crystallinity on the excitonic emission of HCCN materials, thereby expanding their potential applications in the field of photoelectric conversion.&amp;#xD.</description><subject>carbon nitride</subject><subject>excitonic emission</subject><subject>high crystallinity</subject><subject>temperature dependence</subject><subject>time-resolved spectroscopy</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVpaLZp7z0VH1uoE8mSvPKxhH5BoJfkLMajcVfBK7mSDN38-mjZNKcWBgaGZ2Z4H8beCX4puDFXQvai7XVnrsBJ18sXbPM8esk2fNDbVimjztnrnO85F8J04hU7l6bnSmixYf6W9gslKGui1tFCwVEoDf1BX2Lw2NDe5-xjaHAHCbBQ8rl4zE2cmp3_tZsPDaZDLjDP_oFcg5DGSgdfknfUBAgx74hKfsPOJpgzvX3qF-zu65fb6-_tzc9vP64_37Qoe11ajZNyaiuRhh4HDgb0MIIgoTipAToapVKdRkCO2tDYSYDqYhCOBBq5lRfsw-nukuLvlXKxNQHSPEOguGYruTSqM3rQFeUnFFPMOdFkl-T3kA5WcHsUbI827dGmPQmuK--frq_jntzzwl-jFfh4Anxc7H1cU6hh7VGDlbo-r6W3vLOLmyr76R_sf38_AuDslTI</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Wang, Yue</creator><creator>Zhang, Guodi</creator><creator>Zhao, Min</creator><creator>Qi, Hongbo</creator><creator>Gao, Tianqi</creator><creator>An, Limin</creator><creator>Sun, Jianhui</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9460-3512</orcidid></search><sort><creationdate>20240722</creationdate><title>Temperature-dependent excitonic emission characteristics of highly crystallized carbon nitride nanosheets</title><author>Wang, Yue ; Zhang, Guodi ; Zhao, Min ; Qi, Hongbo ; Gao, Tianqi ; An, Limin ; Sun, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5cf4d473ce96c90a8a59ba1e140e49a2eb34425cac0c58eb23aa10891de1c8373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon nitride</topic><topic>excitonic emission</topic><topic>high crystallinity</topic><topic>temperature dependence</topic><topic>time-resolved spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Zhang, Guodi</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Qi, Hongbo</creatorcontrib><creatorcontrib>Gao, Tianqi</creatorcontrib><creatorcontrib>An, Limin</creatorcontrib><creatorcontrib>Sun, Jianhui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yue</au><au>Zhang, Guodi</au><au>Zhao, Min</au><au>Qi, Hongbo</au><au>Gao, Tianqi</au><au>An, Limin</au><au>Sun, Jianhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-dependent excitonic emission characteristics of highly crystallized carbon nitride nanosheets</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2024-07-22</date><risdate>2024</risdate><volume>35</volume><issue>30</issue><spage>305702</spage><pages>305702-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Highly-crystallized carbon nitride (HCCN) nanosheets exhibit significant potential for advancements in the field of photoelectric conversion. However, to fully exploit their potential, a thorough understanding of fundamental excitonic photophysical processes is crucial. Here, the temperature-dependent excitonic photoluminescence (PL) of HCCN nanosheets and amorphous polymeric carbon nitride (PCN) is investigated using steady-state and time-resolved PL spectroscopy. The exciton binding energy of HCCN is determined to be 109.26 meV, lower than that of PCN (207.39 meV), which is attributed to the ordered stacking structure of HCCN with a weaker Coulomb interaction between electrons and holes. As the temperature increases, a noticeable reduction in PL lifetime is observed on both the HCCN and PCN, which is ascribed to the thermal activation of carrier trapping by the enhanced electron-phonon coupling effect. The thermal activation energy of HCCN is determined to be 102.9 meV, close to the value of PCN, due to their same band structures. Through wavelength-dependent PL dynamics analysis, we have identified the PL emission of HCCN as deriving from the transitions: σ*-LP, π*-π, and π*-LP, where the π*-LP transition dominants the emission because of the high excited state density of the LP state. These results demonstrate the impact of high-crystallinity on the excitonic emission of HCCN materials, thereby expanding their potential applications in the field of photoelectric conversion.&amp;#xD.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38604151</pmid><doi>10.1088/1361-6528/ad3d63</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9460-3512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2024-07, Vol.35 (30), p.305702
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_3038428595
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects carbon nitride
excitonic emission
high crystallinity
temperature dependence
time-resolved spectroscopy
title Temperature-dependent excitonic emission characteristics of highly crystallized carbon nitride nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-dependent%20excitonic%20emission%20characteristics%20of%20highly%20crystallized%20carbon%20nitride%20nanosheets&rft.jtitle=Nanotechnology&rft.au=Wang,%20Yue&rft.date=2024-07-22&rft.volume=35&rft.issue=30&rft.spage=305702&rft.pages=305702-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad3d63&rft_dat=%3Cproquest_pubme%3E3038428595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038428595&rft_id=info:pmid/38604151&rfr_iscdi=true