Breaking New Ground in HEV Energy Management: Kinetic Energy Utilization and Systematic EMS Approaches based on robust drive control

The issues faced by hybrid electric vehicles (HEVs) include locating and managing free energy to preserve resource dynamics and constraints while preserving prolonged autonomy. This study assessed a hybrid electric vehicle (HEV) equipped with a fuel cell (FC), battery, direct current generators (DCG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2024-04, Vol.147, p.288-303
Hauptverfasser: Benhammou, Aissa, Hartani, Mohammed Amine, Tedjini, Hamza, Guettaf, Yacine, Soumeur, Mohammed Amine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The issues faced by hybrid electric vehicles (HEVs) include locating and managing free energy to preserve resource dynamics and constraints while preserving prolonged autonomy. This study assessed a hybrid electric vehicle (HEV) equipped with a fuel cell (FC), battery, direct current generators (DCGs), and supercapacitor (SC) to meet the power needs of an automobile utilizing variable power converters. This study examines four HEV energy management strategies (EMSs), increasing clean environmental power penetration by utilizing the HEV's kinetic energy, as a new contribution. Strategies for Proportional-Integral (PI), State-Machine (SM), Artificial Neural Network (ANN), and Adaptive Neural Fuzzy Inference System (ANFIS) EMSs are discussed. In addition to implementing direct torque control with a space vector modulation-based ANFIS controller (ANFIS-DTC-SVM), this study proposes to insert DCGs in the front wheels of HEVs for free energy production. Simulations of EMSs yielded approximative findings, achieving a 22.2 (%) free-exploited kinetic energy. The ANN-based EMS surpassed the competition, yielding the highest energy efficiency 98.2 (%) and the lowest fuel consumption 48.68 (SI). As a result of maximizing battery utilization and limiting fuel consumption, the examined HEV's dependability and stability were confirmed and reached, highlighting the importance of kinetic energy. [Display omitted] •Creation of new energy without pollution.•The exploitation of EV's kinetic energy to produce the power.‎•Applying different energy management strategies.‎•Configuration and control of the two-wheel-drive electric vehicle.‎•Improvement of energy efficiency and fuel consumption.
ISSN:0019-0578
1879-2022
DOI:10.1016/j.isatra.2024.01.037