Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material

This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-04, Vol.17 (7), p.1540
Hauptverfasser: Michalczyk, Krzysztof, Grzejda, Rafał, Urbaś, Andrzej, Różyło, Patryk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1540
container_title Materials
container_volume 17
creator Michalczyk, Krzysztof
Grzejda, Rafał
Urbaś, Andrzej
Różyło, Patryk
description This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses were carried out for models of machined compression springs with a wide range of variation in geometrical parameters. The results of these analyses were used to develop a computational model to estimate the minimum value of the rounding radius , which ensures that the stresses in this zone are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the radius to be estimated for springs with a spring index between 2.5 and 10, a helix angle between 1° and 15°, and a proportion of the sides of the wire section between 0.4 and 5.
doi_str_mv 10.3390/ma17071540
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038427801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790019675</galeid><sourcerecordid>A790019675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4afb2791e69ed4868aa8e5dc2fedb6e8335eacd2fa44645fdeffe491497ac2c93</originalsourceid><addsrcrecordid>eNpdkcFuFSEUhonR2KZ24wMYEjfGeCsMMAPL5nqtJm1c2G7cTLhwaGkYuALTpI_jm8r0tmqEBRz4_v_AOQi9puSEMUU-TpoOZKCCk2fokCrVr6ji_Pk_-wN0XMotaYMxKjv1Eh0w2dOOCHGIfm2cA1P9HeB1mnZz1dWnqAO-SBYCdinjT1AhTz76eI3rDeAzSBPUfI-Te4gvs47FLzL8I0VYjjfRNjsfyhJcaHPjI1j8fZebR_nQrvU2LHYtuTceYsVXBZ789liTtbReh1fohdOhwPHjeoSuPm8u119W59_Ovq5Pz1eGcVVXXLttNygKvQLLZS-1liCs6RzYbQ-SMQHa2M5pznsunIX2ca4oV4M2nVHsCL3b--5y-jlDqePki4EQdIQ0l5ERJnk3SEIb-vY_9DbNuVXtgRqEUKyTjTrZU9c6wOijSzVr06aFyZtWKefb-emgCKGqH0QTvN8LTE6lZHBjq8Sk8_1Iybg0e_zb7Aa_eXzDvJ3A_kGfWst-A_klpZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037559328</pqid></control><display><type>article</type><title>Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Michalczyk, Krzysztof ; Grzejda, Rafał ; Urbaś, Andrzej ; Różyło, Patryk</creator><creatorcontrib>Michalczyk, Krzysztof ; Grzejda, Rafał ; Urbaś, Andrzej ; Różyło, Patryk</creatorcontrib><description>This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses were carried out for models of machined compression springs with a wide range of variation in geometrical parameters. The results of these analyses were used to develop a computational model to estimate the minimum value of the rounding radius , which ensures that the stresses in this zone are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the radius to be estimated for springs with a spring index between 2.5 and 10, a helix angle between 1° and 15°, and a proportion of the sides of the wire section between 0.4 and 5.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17071540</identifier><identifier>PMID: 38612055</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Analysis ; Coils ; Compression springs ; Compression zone ; Computer simulation ; Computer-generated environments ; Energy storage ; Numerical analysis ; Skewness ; Stress concentration ; Stresses ; Wire</subject><ispartof>Materials, 2024-04, Vol.17 (7), p.1540</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-4afb2791e69ed4868aa8e5dc2fedb6e8335eacd2fa44645fdeffe491497ac2c93</cites><orcidid>0000-0003-0454-6193 ; 0000-0002-8323-1335 ; 0000-0002-1024-5947 ; 0000-0003-1997-3235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalczyk, Krzysztof</creatorcontrib><creatorcontrib>Grzejda, Rafał</creatorcontrib><creatorcontrib>Urbaś, Andrzej</creatorcontrib><creatorcontrib>Różyło, Patryk</creatorcontrib><title>Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses were carried out for models of machined compression springs with a wide range of variation in geometrical parameters. The results of these analyses were used to develop a computational model to estimate the minimum value of the rounding radius , which ensures that the stresses in this zone are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the radius to be estimated for springs with a spring index between 2.5 and 10, a helix angle between 1° and 15°, and a proportion of the sides of the wire section between 0.4 and 5.</description><subject>3-D printers</subject><subject>Analysis</subject><subject>Coils</subject><subject>Compression springs</subject><subject>Compression zone</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Energy storage</subject><subject>Numerical analysis</subject><subject>Skewness</subject><subject>Stress concentration</subject><subject>Stresses</subject><subject>Wire</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkcFuFSEUhonR2KZ24wMYEjfGeCsMMAPL5nqtJm1c2G7cTLhwaGkYuALTpI_jm8r0tmqEBRz4_v_AOQi9puSEMUU-TpoOZKCCk2fokCrVr6ji_Pk_-wN0XMotaYMxKjv1Eh0w2dOOCHGIfm2cA1P9HeB1mnZz1dWnqAO-SBYCdinjT1AhTz76eI3rDeAzSBPUfI-Te4gvs47FLzL8I0VYjjfRNjsfyhJcaHPjI1j8fZebR_nQrvU2LHYtuTceYsVXBZ789liTtbReh1fohdOhwPHjeoSuPm8u119W59_Ovq5Pz1eGcVVXXLttNygKvQLLZS-1liCs6RzYbQ-SMQHa2M5pznsunIX2ca4oV4M2nVHsCL3b--5y-jlDqePki4EQdIQ0l5ERJnk3SEIb-vY_9DbNuVXtgRqEUKyTjTrZU9c6wOijSzVr06aFyZtWKefb-emgCKGqH0QTvN8LTE6lZHBjq8Sk8_1Iybg0e_zb7Aa_eXzDvJ3A_kGfWst-A_klpZY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Michalczyk, Krzysztof</creator><creator>Grzejda, Rafał</creator><creator>Urbaś, Andrzej</creator><creator>Różyło, Patryk</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0454-6193</orcidid><orcidid>https://orcid.org/0000-0002-8323-1335</orcidid><orcidid>https://orcid.org/0000-0002-1024-5947</orcidid><orcidid>https://orcid.org/0000-0003-1997-3235</orcidid></search><sort><creationdate>20240401</creationdate><title>Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material</title><author>Michalczyk, Krzysztof ; Grzejda, Rafał ; Urbaś, Andrzej ; Różyło, Patryk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4afb2791e69ed4868aa8e5dc2fedb6e8335eacd2fa44645fdeffe491497ac2c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Analysis</topic><topic>Coils</topic><topic>Compression springs</topic><topic>Compression zone</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Energy storage</topic><topic>Numerical analysis</topic><topic>Skewness</topic><topic>Stress concentration</topic><topic>Stresses</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalczyk, Krzysztof</creatorcontrib><creatorcontrib>Grzejda, Rafał</creatorcontrib><creatorcontrib>Urbaś, Andrzej</creatorcontrib><creatorcontrib>Różyło, Patryk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalczyk, Krzysztof</au><au>Grzejda, Rafał</au><au>Urbaś, Andrzej</au><au>Różyło, Patryk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1540</spage><pages>1540-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses were carried out for models of machined compression springs with a wide range of variation in geometrical parameters. The results of these analyses were used to develop a computational model to estimate the minimum value of the rounding radius , which ensures that the stresses in this zone are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the radius to be estimated for springs with a spring index between 2.5 and 10, a helix angle between 1° and 15°, and a proportion of the sides of the wire section between 0.4 and 5.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612055</pmid><doi>10.3390/ma17071540</doi><orcidid>https://orcid.org/0000-0003-0454-6193</orcidid><orcidid>https://orcid.org/0000-0002-8323-1335</orcidid><orcidid>https://orcid.org/0000-0002-1024-5947</orcidid><orcidid>https://orcid.org/0000-0003-1997-3235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-04, Vol.17 (7), p.1540
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3038427801
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3-D printers
Analysis
Coils
Compression springs
Compression zone
Computer simulation
Computer-generated environments
Energy storage
Numerical analysis
Skewness
Stress concentration
Stresses
Wire
title Effective Computational Model for Determining the Geometry of the Transition Zone of End Coils of Machined Springs, Enabling Efficient Use of the Spring Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Computational%20Model%20for%20Determining%20the%20Geometry%20of%20the%20Transition%20Zone%20of%20End%20Coils%20of%20Machined%20Springs,%20Enabling%20Efficient%20Use%20of%20the%20Spring%20Material&rft.jtitle=Materials&rft.au=Michalczyk,%20Krzysztof&rft.date=2024-04-01&rft.volume=17&rft.issue=7&rft.spage=1540&rft.pages=1540-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17071540&rft_dat=%3Cgale_proqu%3EA790019675%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037559328&rft_id=info:pmid/38612055&rft_galeid=A790019675&rfr_iscdi=true