Lightweight 3D Lithiophilic Graphene Aerogel Current Collectors for Lithium Metal Anodes
Constructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels compr...
Gespeichert in:
Veröffentlicht in: | Materials 2024-04, Vol.17 (7), p.1693 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1693 |
container_title | Materials |
container_volume | 17 |
creator | Guo, Caili Ge, Yongjie Qing, Piao Jin, Yunke Chen, Libao Mei, Lin |
description | Constructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels comprising reduced graphene oxide aerogels and silver nanowires (rGO-AgNW) are synthesized through chemical reduction and freeze-drying techniques. The rGO aerogels with large specific surface areas effectively mitigate local current density and delay the formation of lithium dendrites, and the lithiophilic silver nanowires can provide sites for the uniform deposition of lithium. The rGO-AgNW/Li symmetric cell presents a stable cycle of about 2000 h at 1 mA cm
. When coupled with the LiFePO
cathode, the assembled full cells exhibit outstanding cycle stability and rate performance. Lightweight rGO-AgNW aerogels, as the host for lithium metal, can significantly improve the energy density of lithium metal anodes. |
doi_str_mv | 10.3390/ma17071693 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038427756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790019829</galeid><sourcerecordid>A790019829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-cbf9211f575ee89213fee9fed32bfda41257b2df50f504215f60997b80b472ed3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVqobf4AE3IhQzWMymSxLfULFjYK7ITNz06ZkJjWZQfz3prQ-MAn3XsJ3wiEHoVNKrjhX5LrVVBJJc8X30BFVKp9QlWX7f-YROolxRdLinBZMHaIRL3LKGMmP0NvcLpb9B2wq5jd4bvul9euldbbG90Gvl9ABnkLwC3B4NoQAXY9n3jmoex8iNj5sRUOLn6DXDk8730A8RgdGuwgnuz5Gr3e3L7OHyfz5_nE2nU_q5L6f1JVRjFIjpAAo0sgNgDLQcFaZRmeUCVmxxgiSTsaoMDlRSlYFqTLJEjZGF9t318G_DxD7srWxBud0B36IJSe8yJiUIk_o-T905YfQJXcbSgqhROpjdLWlFtpBaTvj-6DrtBtobe07MDbdT6UihKr0nUlwuRXUwccYwJTrYFsdPktKyk1G5W9GCT7beRiqFpof9DsR_gX574o0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037559530</pqid></control><display><type>article</type><title>Lightweight 3D Lithiophilic Graphene Aerogel Current Collectors for Lithium Metal Anodes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Caili ; Ge, Yongjie ; Qing, Piao ; Jin, Yunke ; Chen, Libao ; Mei, Lin</creator><creatorcontrib>Guo, Caili ; Ge, Yongjie ; Qing, Piao ; Jin, Yunke ; Chen, Libao ; Mei, Lin</creatorcontrib><description>Constructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels comprising reduced graphene oxide aerogels and silver nanowires (rGO-AgNW) are synthesized through chemical reduction and freeze-drying techniques. The rGO aerogels with large specific surface areas effectively mitigate local current density and delay the formation of lithium dendrites, and the lithiophilic silver nanowires can provide sites for the uniform deposition of lithium. The rGO-AgNW/Li symmetric cell presents a stable cycle of about 2000 h at 1 mA cm
. When coupled with the LiFePO
cathode, the assembled full cells exhibit outstanding cycle stability and rate performance. Lightweight rGO-AgNW aerogels, as the host for lithium metal, can significantly improve the energy density of lithium metal anodes.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17071693</identifier><identifier>PMID: 38612206</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aerogels ; Aluminum ; Anodes ; Batteries ; Carbon ; Chemical reduction ; Chemical synthesis ; Collectors ; Electrodes ; Electrolytes ; Energy ; Graphene ; Graphite ; Hydrogels ; Lightweight ; Lithium ; Local current ; Nanowires ; Radiation ; Silver ; Spectrum analysis</subject><ispartof>Materials, 2024-04, Vol.17 (7), p.1693</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-cbf9211f575ee89213fee9fed32bfda41257b2df50f504215f60997b80b472ed3</citedby><cites>FETCH-LOGICAL-c390t-cbf9211f575ee89213fee9fed32bfda41257b2df50f504215f60997b80b472ed3</cites><orcidid>0000-0003-4901-3032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Caili</creatorcontrib><creatorcontrib>Ge, Yongjie</creatorcontrib><creatorcontrib>Qing, Piao</creatorcontrib><creatorcontrib>Jin, Yunke</creatorcontrib><creatorcontrib>Chen, Libao</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><title>Lightweight 3D Lithiophilic Graphene Aerogel Current Collectors for Lithium Metal Anodes</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Constructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels comprising reduced graphene oxide aerogels and silver nanowires (rGO-AgNW) are synthesized through chemical reduction and freeze-drying techniques. The rGO aerogels with large specific surface areas effectively mitigate local current density and delay the formation of lithium dendrites, and the lithiophilic silver nanowires can provide sites for the uniform deposition of lithium. The rGO-AgNW/Li symmetric cell presents a stable cycle of about 2000 h at 1 mA cm
. When coupled with the LiFePO
cathode, the assembled full cells exhibit outstanding cycle stability and rate performance. Lightweight rGO-AgNW aerogels, as the host for lithium metal, can significantly improve the energy density of lithium metal anodes.</description><subject>Aerogels</subject><subject>Aluminum</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Collectors</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hydrogels</subject><subject>Lightweight</subject><subject>Lithium</subject><subject>Local current</subject><subject>Nanowires</subject><subject>Radiation</subject><subject>Silver</subject><subject>Spectrum analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMoVqobf4AE3IhQzWMymSxLfULFjYK7ITNz06ZkJjWZQfz3prQ-MAn3XsJ3wiEHoVNKrjhX5LrVVBJJc8X30BFVKp9QlWX7f-YROolxRdLinBZMHaIRL3LKGMmP0NvcLpb9B2wq5jd4bvul9euldbbG90Gvl9ABnkLwC3B4NoQAXY9n3jmoex8iNj5sRUOLn6DXDk8730A8RgdGuwgnuz5Gr3e3L7OHyfz5_nE2nU_q5L6f1JVRjFIjpAAo0sgNgDLQcFaZRmeUCVmxxgiSTsaoMDlRSlYFqTLJEjZGF9t318G_DxD7srWxBud0B36IJSe8yJiUIk_o-T905YfQJXcbSgqhROpjdLWlFtpBaTvj-6DrtBtobe07MDbdT6UihKr0nUlwuRXUwccYwJTrYFsdPktKyk1G5W9GCT7beRiqFpof9DsR_gX574o0</recordid><startdate>20240407</startdate><enddate>20240407</enddate><creator>Guo, Caili</creator><creator>Ge, Yongjie</creator><creator>Qing, Piao</creator><creator>Jin, Yunke</creator><creator>Chen, Libao</creator><creator>Mei, Lin</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4901-3032</orcidid></search><sort><creationdate>20240407</creationdate><title>Lightweight 3D Lithiophilic Graphene Aerogel Current Collectors for Lithium Metal Anodes</title><author>Guo, Caili ; Ge, Yongjie ; Qing, Piao ; Jin, Yunke ; Chen, Libao ; Mei, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-cbf9211f575ee89213fee9fed32bfda41257b2df50f504215f60997b80b472ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerogels</topic><topic>Aluminum</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Collectors</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hydrogels</topic><topic>Lightweight</topic><topic>Lithium</topic><topic>Local current</topic><topic>Nanowires</topic><topic>Radiation</topic><topic>Silver</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Caili</creatorcontrib><creatorcontrib>Ge, Yongjie</creatorcontrib><creatorcontrib>Qing, Piao</creatorcontrib><creatorcontrib>Jin, Yunke</creatorcontrib><creatorcontrib>Chen, Libao</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Caili</au><au>Ge, Yongjie</au><au>Qing, Piao</au><au>Jin, Yunke</au><au>Chen, Libao</au><au>Mei, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight 3D Lithiophilic Graphene Aerogel Current Collectors for Lithium Metal Anodes</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-07</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1693</spage><pages>1693-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Constructing three-dimensional (3D) current collectors is an effective strategy to solve the hindrance of the development of lithium metal anodes (LMAs). However, the excessive mass of the metallic scaffold structure leads to a decrease in energy density. Herein, lithiophilic graphene aerogels comprising reduced graphene oxide aerogels and silver nanowires (rGO-AgNW) are synthesized through chemical reduction and freeze-drying techniques. The rGO aerogels with large specific surface areas effectively mitigate local current density and delay the formation of lithium dendrites, and the lithiophilic silver nanowires can provide sites for the uniform deposition of lithium. The rGO-AgNW/Li symmetric cell presents a stable cycle of about 2000 h at 1 mA cm
. When coupled with the LiFePO
cathode, the assembled full cells exhibit outstanding cycle stability and rate performance. Lightweight rGO-AgNW aerogels, as the host for lithium metal, can significantly improve the energy density of lithium metal anodes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612206</pmid><doi>10.3390/ma17071693</doi><orcidid>https://orcid.org/0000-0003-4901-3032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-04, Vol.17 (7), p.1693 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038427756 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aerogels Aluminum Anodes Batteries Carbon Chemical reduction Chemical synthesis Collectors Electrodes Electrolytes Energy Graphene Graphite Hydrogels Lightweight Lithium Local current Nanowires Radiation Silver Spectrum analysis |
title | Lightweight 3D Lithiophilic Graphene Aerogel Current Collectors for Lithium Metal Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%203D%20Lithiophilic%20Graphene%20Aerogel%20Current%20Collectors%20for%20Lithium%20Metal%20Anodes&rft.jtitle=Materials&rft.au=Guo,%20Caili&rft.date=2024-04-07&rft.volume=17&rft.issue=7&rft.spage=1693&rft.pages=1693-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17071693&rft_dat=%3Cgale_proqu%3EA790019829%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037559530&rft_id=info:pmid/38612206&rft_galeid=A790019829&rfr_iscdi=true |