Increasing the Service Life of Marine Transport Using Heat-Resistant Polymer Nanocomposites
This paper presents the technological aspects of increasing the thermal stability of polymers, with epoxy binder used to form the polymer materials. Polyethylene polyamine was used to crosslink the epoxy binder. To ensure the thermal stability of the polymer, nanodispersed condensed carbon with a di...
Gespeichert in:
Veröffentlicht in: | Materials 2024-04, Vol.17 (7), p.1503 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1503 |
container_title | Materials |
container_volume | 17 |
creator | Sapronov, Oleksandr Buketov, Andriy Kim, Boksun Vorobiov, Pavlo Sapronova, Lyudmila |
description | This paper presents the technological aspects of increasing the thermal stability of polymers, with epoxy binder used to form the polymer materials. Polyethylene polyamine was used to crosslink the epoxy binder. To ensure the thermal stability of the polymer, nanodispersed condensed carbon with a dispersion of 10-16 nm was used. The research into nanocomposites under the influence of elevated temperatures was carried out using the "Thermoscan-2" derivatograph. Complex studies of thermophysical properties were carried out, according to the results of which the optimal content of nanofiller (0.050 pts.wt.) was determined. At the same time, this particular polymer was characterized by the following properties: temperature of the beginning of mass loss-
= 624.9 K; final temperature of mass loss-
= 718.7 K; relative mass loss-
= 60.3%. Research into the activation energy of thermal destruction was performed to determine the resistance to the destruction of chemical bonds. It was proved that the maximum value of activation energy (170.1 kJ/mol) is characterized by nanocomposites with a content of nanodispersed condensed carbon of 0.050 pts.wt., which indicates the thermal stability of the polymer. |
doi_str_mv | 10.3390/ma17071503 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038427530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790019637</galeid><sourcerecordid>A790019637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5460787f737972e6cfa60865d2006efaf86db35334c455cc79be101f656f64cf3</originalsourceid><addsrcrecordid>eNpdkclKBDEQhoMoKqMXH0ACXkRoTTqdpHMUcYNxweXkoclkKhrpTsYkI_j2RscNqw5VFF8VP_UjtEXJPmOKHAyaSiIpJ2wJrVOlREVV0yz_6dfQZkrPpARjtK3VKlpjraA1oe06ejj3JoJOzj_i_AT4FuKrM4DHzgIOFl_o6Dzgu6h9moWY8f0negY6VzeQXMraZ3wd-rcBIr7UPpgwzEJyGdIGWrG6T7D5VUfo_uT47uisGl-dnh8djivDGpUr3ggiW2klk0rWIIzVgrSCT2tCBFhtWzGdMM5YYxrOjZFqApRQK7iwojGWjdDu4u4shpc5pNwNLhnoe-0hzFPHCGubWvJSR2jnH_oc5tEXdR-U5FyVFxVqf0E96h46523IUZuSUxicCR6sK_NDqQihSjBZFvYWCyaGlCLYbhbdoONbR0n3YVP3a1OBt780zCcDTH_Qb1PYO5HsiwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037559318</pqid></control><display><type>article</type><title>Increasing the Service Life of Marine Transport Using Heat-Resistant Polymer Nanocomposites</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sapronov, Oleksandr ; Buketov, Andriy ; Kim, Boksun ; Vorobiov, Pavlo ; Sapronova, Lyudmila</creator><creatorcontrib>Sapronov, Oleksandr ; Buketov, Andriy ; Kim, Boksun ; Vorobiov, Pavlo ; Sapronova, Lyudmila</creatorcontrib><description>This paper presents the technological aspects of increasing the thermal stability of polymers, with epoxy binder used to form the polymer materials. Polyethylene polyamine was used to crosslink the epoxy binder. To ensure the thermal stability of the polymer, nanodispersed condensed carbon with a dispersion of 10-16 nm was used. The research into nanocomposites under the influence of elevated temperatures was carried out using the "Thermoscan-2" derivatograph. Complex studies of thermophysical properties were carried out, according to the results of which the optimal content of nanofiller (0.050 pts.wt.) was determined. At the same time, this particular polymer was characterized by the following properties: temperature of the beginning of mass loss-
= 624.9 K; final temperature of mass loss-
= 718.7 K; relative mass loss-
= 60.3%. Research into the activation energy of thermal destruction was performed to determine the resistance to the destruction of chemical bonds. It was proved that the maximum value of activation energy (170.1 kJ/mol) is characterized by nanocomposites with a content of nanodispersed condensed carbon of 0.050 pts.wt., which indicates the thermal stability of the polymer.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17071503</identifier><identifier>PMID: 38612018</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Activation energy ; Adhesives ; Alloys ; Carbon ; Chemical bonds ; Chemical properties ; Coatings ; Composite materials ; Fullerenes ; High temperature ; Marine technology ; Marine transportation ; Methods ; Nanocomposites ; Nanoparticles ; Polyamines ; Polymers ; Service enhancement ; Service life ; Shipping industry ; Temperature ; Thermal stability ; Thermophysical properties ; Transportation industry</subject><ispartof>Materials, 2024-04, Vol.17 (7), p.1503</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-5460787f737972e6cfa60865d2006efaf86db35334c455cc79be101f656f64cf3</cites><orcidid>0000-0003-1115-6556 ; 0000-0002-5890-3419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sapronov, Oleksandr</creatorcontrib><creatorcontrib>Buketov, Andriy</creatorcontrib><creatorcontrib>Kim, Boksun</creatorcontrib><creatorcontrib>Vorobiov, Pavlo</creatorcontrib><creatorcontrib>Sapronova, Lyudmila</creatorcontrib><title>Increasing the Service Life of Marine Transport Using Heat-Resistant Polymer Nanocomposites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper presents the technological aspects of increasing the thermal stability of polymers, with epoxy binder used to form the polymer materials. Polyethylene polyamine was used to crosslink the epoxy binder. To ensure the thermal stability of the polymer, nanodispersed condensed carbon with a dispersion of 10-16 nm was used. The research into nanocomposites under the influence of elevated temperatures was carried out using the "Thermoscan-2" derivatograph. Complex studies of thermophysical properties were carried out, according to the results of which the optimal content of nanofiller (0.050 pts.wt.) was determined. At the same time, this particular polymer was characterized by the following properties: temperature of the beginning of mass loss-
= 624.9 K; final temperature of mass loss-
= 718.7 K; relative mass loss-
= 60.3%. Research into the activation energy of thermal destruction was performed to determine the resistance to the destruction of chemical bonds. It was proved that the maximum value of activation energy (170.1 kJ/mol) is characterized by nanocomposites with a content of nanodispersed condensed carbon of 0.050 pts.wt., which indicates the thermal stability of the polymer.</description><subject>Accuracy</subject><subject>Activation energy</subject><subject>Adhesives</subject><subject>Alloys</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Fullerenes</subject><subject>High temperature</subject><subject>Marine technology</subject><subject>Marine transportation</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyamines</subject><subject>Polymers</subject><subject>Service enhancement</subject><subject>Service life</subject><subject>Shipping industry</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Thermophysical properties</subject><subject>Transportation industry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkclKBDEQhoMoKqMXH0ACXkRoTTqdpHMUcYNxweXkoclkKhrpTsYkI_j2RscNqw5VFF8VP_UjtEXJPmOKHAyaSiIpJ2wJrVOlREVV0yz_6dfQZkrPpARjtK3VKlpjraA1oe06ejj3JoJOzj_i_AT4FuKrM4DHzgIOFl_o6Dzgu6h9moWY8f0negY6VzeQXMraZ3wd-rcBIr7UPpgwzEJyGdIGWrG6T7D5VUfo_uT47uisGl-dnh8djivDGpUr3ggiW2klk0rWIIzVgrSCT2tCBFhtWzGdMM5YYxrOjZFqApRQK7iwojGWjdDu4u4shpc5pNwNLhnoe-0hzFPHCGubWvJSR2jnH_oc5tEXdR-U5FyVFxVqf0E96h46523IUZuSUxicCR6sK_NDqQihSjBZFvYWCyaGlCLYbhbdoONbR0n3YVP3a1OBt780zCcDTH_Qb1PYO5HsiwI</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Sapronov, Oleksandr</creator><creator>Buketov, Andriy</creator><creator>Kim, Boksun</creator><creator>Vorobiov, Pavlo</creator><creator>Sapronova, Lyudmila</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1115-6556</orcidid><orcidid>https://orcid.org/0000-0002-5890-3419</orcidid></search><sort><creationdate>20240401</creationdate><title>Increasing the Service Life of Marine Transport Using Heat-Resistant Polymer Nanocomposites</title><author>Sapronov, Oleksandr ; Buketov, Andriy ; Kim, Boksun ; Vorobiov, Pavlo ; Sapronova, Lyudmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5460787f737972e6cfa60865d2006efaf86db35334c455cc79be101f656f64cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Activation energy</topic><topic>Adhesives</topic><topic>Alloys</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Fullerenes</topic><topic>High temperature</topic><topic>Marine technology</topic><topic>Marine transportation</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyamines</topic><topic>Polymers</topic><topic>Service enhancement</topic><topic>Service life</topic><topic>Shipping industry</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Thermophysical properties</topic><topic>Transportation industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sapronov, Oleksandr</creatorcontrib><creatorcontrib>Buketov, Andriy</creatorcontrib><creatorcontrib>Kim, Boksun</creatorcontrib><creatorcontrib>Vorobiov, Pavlo</creatorcontrib><creatorcontrib>Sapronova, Lyudmila</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sapronov, Oleksandr</au><au>Buketov, Andriy</au><au>Kim, Boksun</au><au>Vorobiov, Pavlo</au><au>Sapronova, Lyudmila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the Service Life of Marine Transport Using Heat-Resistant Polymer Nanocomposites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>1503</spage><pages>1503-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper presents the technological aspects of increasing the thermal stability of polymers, with epoxy binder used to form the polymer materials. Polyethylene polyamine was used to crosslink the epoxy binder. To ensure the thermal stability of the polymer, nanodispersed condensed carbon with a dispersion of 10-16 nm was used. The research into nanocomposites under the influence of elevated temperatures was carried out using the "Thermoscan-2" derivatograph. Complex studies of thermophysical properties were carried out, according to the results of which the optimal content of nanofiller (0.050 pts.wt.) was determined. At the same time, this particular polymer was characterized by the following properties: temperature of the beginning of mass loss-
= 624.9 K; final temperature of mass loss-
= 718.7 K; relative mass loss-
= 60.3%. Research into the activation energy of thermal destruction was performed to determine the resistance to the destruction of chemical bonds. It was proved that the maximum value of activation energy (170.1 kJ/mol) is characterized by nanocomposites with a content of nanodispersed condensed carbon of 0.050 pts.wt., which indicates the thermal stability of the polymer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612018</pmid><doi>10.3390/ma17071503</doi><orcidid>https://orcid.org/0000-0003-1115-6556</orcidid><orcidid>https://orcid.org/0000-0002-5890-3419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-04, Vol.17 (7), p.1503 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038427530 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Activation energy Adhesives Alloys Carbon Chemical bonds Chemical properties Coatings Composite materials Fullerenes High temperature Marine technology Marine transportation Methods Nanocomposites Nanoparticles Polyamines Polymers Service enhancement Service life Shipping industry Temperature Thermal stability Thermophysical properties Transportation industry |
title | Increasing the Service Life of Marine Transport Using Heat-Resistant Polymer Nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20Service%20Life%20of%20Marine%20Transport%20Using%20Heat-Resistant%20Polymer%20Nanocomposites&rft.jtitle=Materials&rft.au=Sapronov,%20Oleksandr&rft.date=2024-04-01&rft.volume=17&rft.issue=7&rft.spage=1503&rft.pages=1503-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17071503&rft_dat=%3Cgale_proqu%3EA790019637%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037559318&rft_id=info:pmid/38612018&rft_galeid=A790019637&rfr_iscdi=true |