Decoding Toll-like receptors: Recent insights and perspectives in innate immunity

Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize div...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunity (Cambridge, Mass.) Mass.), 2024-04, Vol.57 (4), p.649-673
Hauptverfasser: Kawai, Taro, Ikegawa, Moe, Ori, Daisuke, Akira, Shizuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases. TLRs play crucial roles in the innate immune system by recognizing pathogen-associated molecular patterns. Despite their protective roles, aberrations in TLRs contribute to inflammatory and autoimmune disorders. Akira et al. offer insights into TLR discovery, ligands, and signaling and their implications in diseases.
ISSN:1074-7613
1097-4180
DOI:10.1016/j.immuni.2024.03.004