Enhancing micropipette aspiration with artificial-intelligence analysis
The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of thes...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2024-09, Vol.123 (17), p.2860-2868 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2868 |
---|---|
container_issue | 17 |
container_start_page | 2860 |
container_title | Biophysical journal |
container_volume | 123 |
creator | Abarca-Ortega, Aldo González-Bermúdez, Blanca Plaza, Gustavo R. |
description | The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements. |
doi_str_mv | 10.1016/j.bpj.2024.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3037394867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524002509</els_id><sourcerecordid>3037394867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-af2cf0449d5b345890977b7b8c1bb66ffadde24b40afd237422bc5bad706648c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWqs_wIv06GXr5GOzu3gSqR8geNFzSLLZOst-maRK_70pVY_CwMDkmZfMQ8gFhSUFKq_bpZnaJQMmlpAK5AGZ0VywDKCUh2QGaZRxUeUn5DSEFoCyHOgxOeGlTE9VOSMPq-FdDxaH9aJH68cJJxejW-gwodcRx2HxhfF9oX3EBi3qLsMhuq7DtRts4gbdbQOGM3LU6C64858-J2_3q9e7x-z55eHp7vY5sxzymOmG2QaEqOrccJGXFVRFYQpTWmqMlE2j69oxYQTopma8EIwZmxtdFyClKC2fk6t97uTHj40LUfUYbPqPHty4CYoDL3glSlkklO7RdFYI3jVq8thrv1UU1M6falXyp3b-FKQCmXYuf-I3pnf138avsATc7AGXjvxE51WwuDNRo3c2qnrEf-K_AS_pgbM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037394867</pqid></control><display><type>article</type><title>Enhancing micropipette aspiration with artificial-intelligence analysis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Abarca-Ortega, Aldo ; González-Bermúdez, Blanca ; Plaza, Gustavo R.</creator><creatorcontrib>Abarca-Ortega, Aldo ; González-Bermúdez, Blanca ; Plaza, Gustavo R.</creatorcontrib><description>The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.04.006</identifier><identifier>PMID: 38600698</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial Intelligence ; Suction</subject><ispartof>Biophysical journal, 2024-09, Vol.123 (17), p.2860-2868</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-af2cf0449d5b345890977b7b8c1bb66ffadde24b40afd237422bc5bad706648c3</cites><orcidid>0000-0002-5555-5498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2024.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38600698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abarca-Ortega, Aldo</creatorcontrib><creatorcontrib>González-Bermúdez, Blanca</creatorcontrib><creatorcontrib>Plaza, Gustavo R.</creatorcontrib><title>Enhancing micropipette aspiration with artificial-intelligence analysis</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements.</description><subject>Artificial Intelligence</subject><subject>Suction</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMoWqs_wIv06GXr5GOzu3gSqR8geNFzSLLZOst-maRK_70pVY_CwMDkmZfMQ8gFhSUFKq_bpZnaJQMmlpAK5AGZ0VywDKCUh2QGaZRxUeUn5DSEFoCyHOgxOeGlTE9VOSMPq-FdDxaH9aJH68cJJxejW-gwodcRx2HxhfF9oX3EBi3qLsMhuq7DtRts4gbdbQOGM3LU6C64858-J2_3q9e7x-z55eHp7vY5sxzymOmG2QaEqOrccJGXFVRFYQpTWmqMlE2j69oxYQTopma8EIwZmxtdFyClKC2fk6t97uTHj40LUfUYbPqPHty4CYoDL3glSlkklO7RdFYI3jVq8thrv1UU1M6falXyp3b-FKQCmXYuf-I3pnf138avsATc7AGXjvxE51WwuDNRo3c2qnrEf-K_AS_pgbM</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Abarca-Ortega, Aldo</creator><creator>González-Bermúdez, Blanca</creator><creator>Plaza, Gustavo R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5555-5498</orcidid></search><sort><creationdate>20240903</creationdate><title>Enhancing micropipette aspiration with artificial-intelligence analysis</title><author>Abarca-Ortega, Aldo ; González-Bermúdez, Blanca ; Plaza, Gustavo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-af2cf0449d5b345890977b7b8c1bb66ffadde24b40afd237422bc5bad706648c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Suction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abarca-Ortega, Aldo</creatorcontrib><creatorcontrib>González-Bermúdez, Blanca</creatorcontrib><creatorcontrib>Plaza, Gustavo R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abarca-Ortega, Aldo</au><au>González-Bermúdez, Blanca</au><au>Plaza, Gustavo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing micropipette aspiration with artificial-intelligence analysis</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>123</volume><issue>17</issue><spage>2860</spage><epage>2868</epage><pages>2860-2868</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38600698</pmid><doi>10.1016/j.bpj.2024.04.006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5555-5498</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2024-09, Vol.123 (17), p.2860-2868 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_proquest_miscellaneous_3037394867 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Artificial Intelligence Suction |
title | Enhancing micropipette aspiration with artificial-intelligence analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20micropipette%20aspiration%20with%20artificial-intelligence%20analysis&rft.jtitle=Biophysical%20journal&rft.au=Abarca-Ortega,%20Aldo&rft.date=2024-09-03&rft.volume=123&rft.issue=17&rft.spage=2860&rft.epage=2868&rft.pages=2860-2868&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.04.006&rft_dat=%3Cproquest_cross%3E3037394867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037394867&rft_id=info:pmid/38600698&rft_els_id=S0006349524002509&rfr_iscdi=true |