cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity

Cyclic GMP–AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2024-06, Vol.31 (6), p.722-737
Hauptverfasser: Ma, Dapeng, Yang, Min, Sun, Caiyu, Cui, Xiuling, Xiong, Gaozhong, Wang, Qiushi, Jing, Weiqiang, Chen, Haiqiang, Lv, Xiaoting, Liu, Shili, Li, Tao, Zhao, Yunxue, Han, Lihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 6
container_start_page 722
container_title Cell death and differentiation
container_volume 31
creator Ma, Dapeng
Yang, Min
Sun, Caiyu
Cui, Xiuling
Xiong, Gaozhong
Wang, Qiushi
Jing, Weiqiang
Chen, Haiqiang
Lv, Xiaoting
Liu, Shili
Li, Tao
Zhao, Yunxue
Han, Lihui
description Cyclic GMP–AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.
doi_str_mv 10.1038/s41418-024-01291-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035540204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035540204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-96cfe8cac4e2ca73a765f4b4d4e339c6beefc0655e72121226491abe04efaf3b3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk7_gBcS8Mabar6aLpdj6BQmCtPrkGanrmNra04r7N-buanghQSSQJ73zeEh5Jyza87k8AYVV3yYMKESxoXhiTkgfa4ynaSKycN4lylLDFNZj5wgLhljOjP6mPTkMDVKKdknMz8ZzSh2TRMAEZAuoHFt7WG16lYuUO-CL6t67WhZzaGBuFUtrQtatkhj9vGZ4qZqFw6BOt-WH2W7OSVHhVshnO3PAXm9u30Z3yfTp8nDeDRNvBS6TYz2BQy98wqEd5l0mU4Llau5AimN1zlA4ZlOU8gEj0toZbjLgSkoXCFzOSBXu94m1O8dYGvXJW4ndxXUHVrJZBpNCKYievkHXdZdqOJ0kdKaaylMFimxo3yoEQMUtgnl2oWN5cxuldudchuV2y_l1sTQxb66y9cw_4l8O46A3AEYn6o3CL9__1P7CVF2jIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066163297</pqid></control><display><type>article</type><title>cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Dapeng ; Yang, Min ; Sun, Caiyu ; Cui, Xiuling ; Xiong, Gaozhong ; Wang, Qiushi ; Jing, Weiqiang ; Chen, Haiqiang ; Lv, Xiaoting ; Liu, Shili ; Li, Tao ; Zhao, Yunxue ; Han, Lihui</creator><creatorcontrib>Ma, Dapeng ; Yang, Min ; Sun, Caiyu ; Cui, Xiuling ; Xiong, Gaozhong ; Wang, Qiushi ; Jing, Weiqiang ; Chen, Haiqiang ; Lv, Xiaoting ; Liu, Shili ; Li, Tao ; Zhao, Yunxue ; Han, Lihui</creatorcontrib><description>Cyclic GMP–AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.</description><identifier>ISSN: 1350-9047</identifier><identifier>ISSN: 1476-5403</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-024-01291-9</identifier><identifier>PMID: 38594443</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13/1 ; 13/109 ; 13/51 ; 13/89 ; 13/95 ; 14/5 ; 14/63 ; 59 ; 64 ; 64/60 ; 692/308/1426 ; 692/699/67/1244 ; AKT protein ; Animal models ; Animals ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Carcinoma, Hepatocellular - metabolism ; Carcinoma, Hepatocellular - pathology ; Cell Biology ; Cell Cycle Analysis ; Cell Line, Tumor ; Hepatocellular carcinoma ; Hepatocytes ; Humans ; Immune response ; Kinases ; Life Sciences ; Liver cancer ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Male ; Malignancy ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Nude ; Nucleotides, Cyclic - metabolism ; Nucleotidyltransferases - metabolism ; Pathogens ; Phosphatidylinositol 3-Kinases - metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 - metabolism ; Protein-tyrosine-phosphatase ; Proto-Oncogene Proteins c-akt - metabolism ; SHP-1 protein ; Signal Transduction ; Stem Cells ; Tumor suppressor genes</subject><ispartof>Cell death and differentiation, 2024-06, Vol.31 (6), p.722-737</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-96cfe8cac4e2ca73a765f4b4d4e339c6beefc0655e72121226491abe04efaf3b3</cites><orcidid>0000-0002-3001-5364 ; 0000-0003-1030-2232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41418-024-01291-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41418-024-01291-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38594443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Dapeng</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Sun, Caiyu</creatorcontrib><creatorcontrib>Cui, Xiuling</creatorcontrib><creatorcontrib>Xiong, Gaozhong</creatorcontrib><creatorcontrib>Wang, Qiushi</creatorcontrib><creatorcontrib>Jing, Weiqiang</creatorcontrib><creatorcontrib>Chen, Haiqiang</creatorcontrib><creatorcontrib>Lv, Xiaoting</creatorcontrib><creatorcontrib>Liu, Shili</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Zhao, Yunxue</creatorcontrib><creatorcontrib>Han, Lihui</creatorcontrib><title>cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Cyclic GMP–AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13/1</subject><subject>13/109</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/5</subject><subject>14/63</subject><subject>59</subject><subject>64</subject><subject>64/60</subject><subject>692/308/1426</subject><subject>692/699/67/1244</subject><subject>AKT protein</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell Line, Tumor</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Immune response</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Male</subject><subject>Malignancy</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nucleotides, Cyclic - metabolism</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Pathogens</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 6 - metabolism</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>SHP-1 protein</subject><subject>Signal Transduction</subject><subject>Stem Cells</subject><subject>Tumor suppressor genes</subject><issn>1350-9047</issn><issn>1476-5403</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobk7_gBcS8Mabar6aLpdj6BQmCtPrkGanrmNra04r7N-buanghQSSQJ73zeEh5Jyza87k8AYVV3yYMKESxoXhiTkgfa4ynaSKycN4lylLDFNZj5wgLhljOjP6mPTkMDVKKdknMz8ZzSh2TRMAEZAuoHFt7WG16lYuUO-CL6t67WhZzaGBuFUtrQtatkhj9vGZ4qZqFw6BOt-WH2W7OSVHhVshnO3PAXm9u30Z3yfTp8nDeDRNvBS6TYz2BQy98wqEd5l0mU4Llau5AimN1zlA4ZlOU8gEj0toZbjLgSkoXCFzOSBXu94m1O8dYGvXJW4ndxXUHVrJZBpNCKYievkHXdZdqOJ0kdKaaylMFimxo3yoEQMUtgnl2oWN5cxuldudchuV2y_l1sTQxb66y9cw_4l8O46A3AEYn6o3CL9__1P7CVF2jIA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ma, Dapeng</creator><creator>Yang, Min</creator><creator>Sun, Caiyu</creator><creator>Cui, Xiuling</creator><creator>Xiong, Gaozhong</creator><creator>Wang, Qiushi</creator><creator>Jing, Weiqiang</creator><creator>Chen, Haiqiang</creator><creator>Lv, Xiaoting</creator><creator>Liu, Shili</creator><creator>Li, Tao</creator><creator>Zhao, Yunxue</creator><creator>Han, Lihui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3001-5364</orcidid><orcidid>https://orcid.org/0000-0003-1030-2232</orcidid></search><sort><creationdate>20240601</creationdate><title>cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity</title><author>Ma, Dapeng ; Yang, Min ; Sun, Caiyu ; Cui, Xiuling ; Xiong, Gaozhong ; Wang, Qiushi ; Jing, Weiqiang ; Chen, Haiqiang ; Lv, Xiaoting ; Liu, Shili ; Li, Tao ; Zhao, Yunxue ; Han, Lihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-96cfe8cac4e2ca73a765f4b4d4e339c6beefc0655e72121226491abe04efaf3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13/1</topic><topic>13/109</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/5</topic><topic>14/63</topic><topic>59</topic><topic>64</topic><topic>64/60</topic><topic>692/308/1426</topic><topic>692/699/67/1244</topic><topic>AKT protein</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell Line, Tumor</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Immune response</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Male</topic><topic>Malignancy</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nucleotides, Cyclic - metabolism</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Pathogens</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 6 - metabolism</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>SHP-1 protein</topic><topic>Signal Transduction</topic><topic>Stem Cells</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dapeng</creatorcontrib><creatorcontrib>Yang, Min</creatorcontrib><creatorcontrib>Sun, Caiyu</creatorcontrib><creatorcontrib>Cui, Xiuling</creatorcontrib><creatorcontrib>Xiong, Gaozhong</creatorcontrib><creatorcontrib>Wang, Qiushi</creatorcontrib><creatorcontrib>Jing, Weiqiang</creatorcontrib><creatorcontrib>Chen, Haiqiang</creatorcontrib><creatorcontrib>Lv, Xiaoting</creatorcontrib><creatorcontrib>Liu, Shili</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Zhao, Yunxue</creatorcontrib><creatorcontrib>Han, Lihui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dapeng</au><au>Yang, Min</au><au>Sun, Caiyu</au><au>Cui, Xiuling</au><au>Xiong, Gaozhong</au><au>Wang, Qiushi</au><au>Jing, Weiqiang</au><au>Chen, Haiqiang</au><au>Lv, Xiaoting</au><au>Liu, Shili</au><au>Li, Tao</au><au>Zhao, Yunxue</au><au>Han, Lihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><spage>722</spage><epage>737</epage><pages>722-737</pages><issn>1350-9047</issn><issn>1476-5403</issn><eissn>1476-5403</eissn><abstract>Cyclic GMP–AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38594443</pmid><doi>10.1038/s41418-024-01291-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3001-5364</orcidid><orcidid>https://orcid.org/0000-0003-1030-2232</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2024-06, Vol.31 (6), p.722-737
issn 1350-9047
1476-5403
1476-5403
language eng
recordid cdi_proquest_miscellaneous_3035540204
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 1-Phosphatidylinositol 3-kinase
13/1
13/109
13/51
13/89
13/95
14/5
14/63
59
64
64/60
692/308/1426
692/699/67/1244
AKT protein
Animal models
Animals
Apoptosis
Biochemistry
Biomedical and Life Sciences
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - pathology
Cell Biology
Cell Cycle Analysis
Cell Line, Tumor
Hepatocellular carcinoma
Hepatocytes
Humans
Immune response
Kinases
Life Sciences
Liver cancer
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Male
Malignancy
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Mice, Nude
Nucleotides, Cyclic - metabolism
Nucleotidyltransferases - metabolism
Pathogens
Phosphatidylinositol 3-Kinases - metabolism
Protein Tyrosine Phosphatase, Non-Receptor Type 6 - metabolism
Protein-tyrosine-phosphatase
Proto-Oncogene Proteins c-akt - metabolism
SHP-1 protein
Signal Transduction
Stem Cells
Tumor suppressor genes
title cGAS suppresses hepatocellular carcinoma independent of its cGAMP synthase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=cGAS%20suppresses%20hepatocellular%20carcinoma%20independent%20of%20its%20cGAMP%20synthase%20activity&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Ma,%20Dapeng&rft.date=2024-06-01&rft.volume=31&rft.issue=6&rft.spage=722&rft.epage=737&rft.pages=722-737&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-024-01291-9&rft_dat=%3Cproquest_cross%3E3035540204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066163297&rft_id=info:pmid/38594443&rfr_iscdi=true