Mutual Correlation Network for few-shot learning

Most metric-based Few-Shot Learning (FSL) methods focus on learning good embeddings of images. However, these methods either lack the ability to explore the cross-correlation (i.e., correlated information) between image pairs or explore limited consensus among the correlation map constrained by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-07, Vol.175, p.106289-106289, Article 106289
Hauptverfasser: Chen, Derong, Chen, Feiyu, Ouyang, Deqiang, Shao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106289
container_issue
container_start_page 106289
container_title Neural networks
container_volume 175
creator Chen, Derong
Chen, Feiyu
Ouyang, Deqiang
Shao, Jie
description Most metric-based Few-Shot Learning (FSL) methods focus on learning good embeddings of images. However, these methods either lack the ability to explore the cross-correlation (i.e., correlated information) between image pairs or explore limited consensus among the correlation map constrained by the limited receptive field of CNN. We propose a Mutual Correlation Network (MCNet) to explore global consensus among the correlation map by using the self-attention mechanism which has a global receptive field. Our MCNet contains two core modules: (1) a multi-level embedding module that generates multi-level embeddings for an image pair which capture hierarchical semantics, and (2) a mutual correlation module that refines correlation map of two embeddings and generates more robust relational embeddings. Extensive experiments show that our MCNet achieves competitive results on four widely-used few-shot classification benchmarks miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS. Code is available at https://github.com/DRGreat/MCNet.
doi_str_mv 10.1016/j.neunet.2024.106289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035540091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024002132</els_id><sourcerecordid>3035540091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2dfa6bc72003ddb802f6b03a83d95ab1b1ccd28e367cdc4f667b5145f0af4753</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySZlbCeOs0FCFS-pwKZ7y7HHkJLGxU6o-HuCUliyGml07jwOIecU5hSouFrPW-xb7OYMWDa0BJPlAZlSWZQpKyQ7JFOQJU8FSJiQkxjXACBkxo_JhMu85HleTgk89V2vm2ThQ8BGd7Vvk2fsdj68J86HxOEujW--SxrUoa3b11Ny5HQT8WxfZ2R1d7taPKTLl_vHxc0yNZzSLmXWaVGZggFwaysJzIkKuJbclrmuaEWNsUwiF4WxJnNCFFVOs9yBdlmR8xm5HMdug__oMXZqU0eDTaNb9H1UHIb7M4CSDmg2oib4GAM6tQ31RocvRUH9qFJrNapSP6rUqGqIXew39NUG7V_o180AXI8ADm9-1hhUNDW2Bm0d0HTK-vr_Dd_KzHu-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035540091</pqid></control><display><type>article</type><title>Mutual Correlation Network for few-shot learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Derong ; Chen, Feiyu ; Ouyang, Deqiang ; Shao, Jie</creator><creatorcontrib>Chen, Derong ; Chen, Feiyu ; Ouyang, Deqiang ; Shao, Jie</creatorcontrib><description>Most metric-based Few-Shot Learning (FSL) methods focus on learning good embeddings of images. However, these methods either lack the ability to explore the cross-correlation (i.e., correlated information) between image pairs or explore limited consensus among the correlation map constrained by the limited receptive field of CNN. We propose a Mutual Correlation Network (MCNet) to explore global consensus among the correlation map by using the self-attention mechanism which has a global receptive field. Our MCNet contains two core modules: (1) a multi-level embedding module that generates multi-level embeddings for an image pair which capture hierarchical semantics, and (2) a mutual correlation module that refines correlation map of two embeddings and generates more robust relational embeddings. Extensive experiments show that our MCNet achieves competitive results on four widely-used few-shot classification benchmarks miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS. Code is available at https://github.com/DRGreat/MCNet.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.106289</identifier><identifier>PMID: 38593559</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Few-shot classification ; Multi-level embedding ; Mutual correlation ; Self-attention mechanism</subject><ispartof>Neural networks, 2024-07, Vol.175, p.106289-106289, Article 106289</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-2dfa6bc72003ddb802f6b03a83d95ab1b1ccd28e367cdc4f667b5145f0af4753</cites><orcidid>0000-0003-2615-1555 ; 0000-0002-0928-6899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2024.106289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Derong</creatorcontrib><creatorcontrib>Chen, Feiyu</creatorcontrib><creatorcontrib>Ouyang, Deqiang</creatorcontrib><creatorcontrib>Shao, Jie</creatorcontrib><title>Mutual Correlation Network for few-shot learning</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Most metric-based Few-Shot Learning (FSL) methods focus on learning good embeddings of images. However, these methods either lack the ability to explore the cross-correlation (i.e., correlated information) between image pairs or explore limited consensus among the correlation map constrained by the limited receptive field of CNN. We propose a Mutual Correlation Network (MCNet) to explore global consensus among the correlation map by using the self-attention mechanism which has a global receptive field. Our MCNet contains two core modules: (1) a multi-level embedding module that generates multi-level embeddings for an image pair which capture hierarchical semantics, and (2) a mutual correlation module that refines correlation map of two embeddings and generates more robust relational embeddings. Extensive experiments show that our MCNet achieves competitive results on four widely-used few-shot classification benchmarks miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS. Code is available at https://github.com/DRGreat/MCNet.</description><subject>Few-shot classification</subject><subject>Multi-level embedding</subject><subject>Mutual correlation</subject><subject>Self-attention mechanism</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySZlbCeOs0FCFS-pwKZ7y7HHkJLGxU6o-HuCUliyGml07jwOIecU5hSouFrPW-xb7OYMWDa0BJPlAZlSWZQpKyQ7JFOQJU8FSJiQkxjXACBkxo_JhMu85HleTgk89V2vm2ThQ8BGd7Vvk2fsdj68J86HxOEujW--SxrUoa3b11Ny5HQT8WxfZ2R1d7taPKTLl_vHxc0yNZzSLmXWaVGZggFwaysJzIkKuJbclrmuaEWNsUwiF4WxJnNCFFVOs9yBdlmR8xm5HMdug__oMXZqU0eDTaNb9H1UHIb7M4CSDmg2oib4GAM6tQ31RocvRUH9qFJrNapSP6rUqGqIXew39NUG7V_o180AXI8ADm9-1hhUNDW2Bm0d0HTK-vr_Dd_KzHu-</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chen, Derong</creator><creator>Chen, Feiyu</creator><creator>Ouyang, Deqiang</creator><creator>Shao, Jie</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2615-1555</orcidid><orcidid>https://orcid.org/0000-0002-0928-6899</orcidid></search><sort><creationdate>20240701</creationdate><title>Mutual Correlation Network for few-shot learning</title><author>Chen, Derong ; Chen, Feiyu ; Ouyang, Deqiang ; Shao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2dfa6bc72003ddb802f6b03a83d95ab1b1ccd28e367cdc4f667b5145f0af4753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Few-shot classification</topic><topic>Multi-level embedding</topic><topic>Mutual correlation</topic><topic>Self-attention mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Derong</creatorcontrib><creatorcontrib>Chen, Feiyu</creatorcontrib><creatorcontrib>Ouyang, Deqiang</creatorcontrib><creatorcontrib>Shao, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Derong</au><au>Chen, Feiyu</au><au>Ouyang, Deqiang</au><au>Shao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutual Correlation Network for few-shot learning</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>175</volume><spage>106289</spage><epage>106289</epage><pages>106289-106289</pages><artnum>106289</artnum><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Most metric-based Few-Shot Learning (FSL) methods focus on learning good embeddings of images. However, these methods either lack the ability to explore the cross-correlation (i.e., correlated information) between image pairs or explore limited consensus among the correlation map constrained by the limited receptive field of CNN. We propose a Mutual Correlation Network (MCNet) to explore global consensus among the correlation map by using the self-attention mechanism which has a global receptive field. Our MCNet contains two core modules: (1) a multi-level embedding module that generates multi-level embeddings for an image pair which capture hierarchical semantics, and (2) a mutual correlation module that refines correlation map of two embeddings and generates more robust relational embeddings. Extensive experiments show that our MCNet achieves competitive results on four widely-used few-shot classification benchmarks miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS. Code is available at https://github.com/DRGreat/MCNet.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38593559</pmid><doi>10.1016/j.neunet.2024.106289</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2615-1555</orcidid><orcidid>https://orcid.org/0000-0002-0928-6899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-07, Vol.175, p.106289-106289, Article 106289
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_3035540091
source Access via ScienceDirect (Elsevier)
subjects Few-shot classification
Multi-level embedding
Mutual correlation
Self-attention mechanism
title Mutual Correlation Network for few-shot learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutual%20Correlation%20Network%20for%20few-shot%20learning&rft.jtitle=Neural%20networks&rft.au=Chen,%20Derong&rft.date=2024-07-01&rft.volume=175&rft.spage=106289&rft.epage=106289&rft.pages=106289-106289&rft.artnum=106289&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.106289&rft_dat=%3Cproquest_cross%3E3035540091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035540091&rft_id=info:pmid/38593559&rft_els_id=S0893608024002132&rfr_iscdi=true