Nanochannel Stability of Chemically Converted Graphene Oxide Membranes

Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (34), p.e2311237-n/a
Hauptverfasser: Zhou, Siyu, Guan, Kecheng, Li, Zhan, Xu, Ping, Fang, Shang, Zhang, Aiwen, Wang, Zheng, He, Shengnan, Nakagawa, Keizo, Matsuyama, Hideto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page e2311237
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Zhou, Siyu
Guan, Kecheng
Li, Zhan
Xu, Ping
Fang, Shang
Zhang, Aiwen
Wang, Zheng
He, Shengnan
Nakagawa, Keizo
Matsuyama, Hideto
description Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono‐, di‐, and tri‐saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m−2 h−1 bar−1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation. The effects of property difference between different conversion agents on the nanochannel stabilization are evidenced. The agent with efficient chemical reduction of GO and limited intercalation effect in the resulting nanochannel ensures satisfactory nanochannel stability under desalination process. The optimal membrane nanochannel possess significantly improved stability under various changing conditions as compared to the original GO.
doi_str_mv 10.1002/smll.202311237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095503952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3287-390459e624ae5b708780dbc4548c04f1041830e849c4380d55d31651382ed8a3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujEUSvHs0SL16GbV-7tUdDBE1ADnBfuu0tjHQbtqDuv3cExMSLp_eS971ffvkIuWV0yCjlj76ydsgpB8Y4xGekzyIGYaS4Pj_tjPbIlfdrSoFxEV-SHiipAeKoT8Zvpm6ylalrtMFia9LSlts2aIpgtMKqzIy1bTBq6g90W8yDiTObFdYYzL_KHIMZVqkzNfprclEY6_HmOAdkOX5ejl7C6XzyOnqahhlwFYegqZAaIy4MyjSmKlY0TzMhhcqoKBgVTAFFJXQmoDtJmQOLJAPFMVcGBuThELtxzfsO_TapSp-htV2HZucToCAlaK2jDr3_g66bnau7ch2lpaSgJe-o4YHKXOO9wyLZuLIyrk0YTfaCk73g5CS4e7g7xu7SCvMT_mO0A_QB-Cwttv_EJYvZdPob_g1WI4UE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095503952</pqid></control><display><type>article</type><title>Nanochannel Stability of Chemically Converted Graphene Oxide Membranes</title><source>Wiley Online Library All Journals</source><creator>Zhou, Siyu ; Guan, Kecheng ; Li, Zhan ; Xu, Ping ; Fang, Shang ; Zhang, Aiwen ; Wang, Zheng ; He, Shengnan ; Nakagawa, Keizo ; Matsuyama, Hideto</creator><creatorcontrib>Zhou, Siyu ; Guan, Kecheng ; Li, Zhan ; Xu, Ping ; Fang, Shang ; Zhang, Aiwen ; Wang, Zheng ; He, Shengnan ; Nakagawa, Keizo ; Matsuyama, Hideto</creatorcontrib><description>Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono‐, di‐, and tri‐saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m−2 h−1 bar−1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation. The effects of property difference between different conversion agents on the nanochannel stabilization are evidenced. The agent with efficient chemical reduction of GO and limited intercalation effect in the resulting nanochannel ensures satisfactory nanochannel stability under desalination process. The optimal membrane nanochannel possess significantly improved stability under various changing conditions as compared to the original GO.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202311237</identifier><identifier>PMID: 38593376</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous environments ; Carbohydrates ; chemical conversion ; Chemical reduction ; desalination ; Graphene ; graphene oxide ; Maltose ; Membranes ; Molecular properties ; nanochannel membrane ; Nanochannels ; Separation ; Stability ; Stabilization</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (34), p.e2311237-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3287-390459e624ae5b708780dbc4548c04f1041830e849c4380d55d31651382ed8a3</cites><orcidid>0000-0003-2468-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202311237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202311237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Siyu</creatorcontrib><creatorcontrib>Guan, Kecheng</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Fang, Shang</creatorcontrib><creatorcontrib>Zhang, Aiwen</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>He, Shengnan</creatorcontrib><creatorcontrib>Nakagawa, Keizo</creatorcontrib><creatorcontrib>Matsuyama, Hideto</creatorcontrib><title>Nanochannel Stability of Chemically Converted Graphene Oxide Membranes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono‐, di‐, and tri‐saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m−2 h−1 bar−1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation. The effects of property difference between different conversion agents on the nanochannel stabilization are evidenced. The agent with efficient chemical reduction of GO and limited intercalation effect in the resulting nanochannel ensures satisfactory nanochannel stability under desalination process. The optimal membrane nanochannel possess significantly improved stability under various changing conditions as compared to the original GO.</description><subject>Aqueous environments</subject><subject>Carbohydrates</subject><subject>chemical conversion</subject><subject>Chemical reduction</subject><subject>desalination</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Maltose</subject><subject>Membranes</subject><subject>Molecular properties</subject><subject>nanochannel membrane</subject><subject>Nanochannels</subject><subject>Separation</subject><subject>Stability</subject><subject>Stabilization</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxujEUSvHs0SL16GbV-7tUdDBE1ADnBfuu0tjHQbtqDuv3cExMSLp_eS971ffvkIuWV0yCjlj76ydsgpB8Y4xGekzyIGYaS4Pj_tjPbIlfdrSoFxEV-SHiipAeKoT8Zvpm6ylalrtMFia9LSlts2aIpgtMKqzIy1bTBq6g90W8yDiTObFdYYzL_KHIMZVqkzNfprclEY6_HmOAdkOX5ejl7C6XzyOnqahhlwFYegqZAaIy4MyjSmKlY0TzMhhcqoKBgVTAFFJXQmoDtJmQOLJAPFMVcGBuThELtxzfsO_TapSp-htV2HZucToCAlaK2jDr3_g66bnau7ch2lpaSgJe-o4YHKXOO9wyLZuLIyrk0YTfaCk73g5CS4e7g7xu7SCvMT_mO0A_QB-Cwttv_EJYvZdPob_g1WI4UE</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhou, Siyu</creator><creator>Guan, Kecheng</creator><creator>Li, Zhan</creator><creator>Xu, Ping</creator><creator>Fang, Shang</creator><creator>Zhang, Aiwen</creator><creator>Wang, Zheng</creator><creator>He, Shengnan</creator><creator>Nakagawa, Keizo</creator><creator>Matsuyama, Hideto</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2468-4905</orcidid></search><sort><creationdate>20240801</creationdate><title>Nanochannel Stability of Chemically Converted Graphene Oxide Membranes</title><author>Zhou, Siyu ; Guan, Kecheng ; Li, Zhan ; Xu, Ping ; Fang, Shang ; Zhang, Aiwen ; Wang, Zheng ; He, Shengnan ; Nakagawa, Keizo ; Matsuyama, Hideto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3287-390459e624ae5b708780dbc4548c04f1041830e849c4380d55d31651382ed8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous environments</topic><topic>Carbohydrates</topic><topic>chemical conversion</topic><topic>Chemical reduction</topic><topic>desalination</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Maltose</topic><topic>Membranes</topic><topic>Molecular properties</topic><topic>nanochannel membrane</topic><topic>Nanochannels</topic><topic>Separation</topic><topic>Stability</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Siyu</creatorcontrib><creatorcontrib>Guan, Kecheng</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Fang, Shang</creatorcontrib><creatorcontrib>Zhang, Aiwen</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>He, Shengnan</creatorcontrib><creatorcontrib>Nakagawa, Keizo</creatorcontrib><creatorcontrib>Matsuyama, Hideto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Siyu</au><au>Guan, Kecheng</au><au>Li, Zhan</au><au>Xu, Ping</au><au>Fang, Shang</au><au>Zhang, Aiwen</au><au>Wang, Zheng</au><au>He, Shengnan</au><au>Nakagawa, Keizo</au><au>Matsuyama, Hideto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanochannel Stability of Chemically Converted Graphene Oxide Membranes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>34</issue><spage>e2311237</spage><epage>n/a</epage><pages>e2311237-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono‐, di‐, and tri‐saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m−2 h−1 bar−1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation. The effects of property difference between different conversion agents on the nanochannel stabilization are evidenced. The agent with efficient chemical reduction of GO and limited intercalation effect in the resulting nanochannel ensures satisfactory nanochannel stability under desalination process. The optimal membrane nanochannel possess significantly improved stability under various changing conditions as compared to the original GO.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38593376</pmid><doi>10.1002/smll.202311237</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2468-4905</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (34), p.e2311237-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3035539996
source Wiley Online Library All Journals
subjects Aqueous environments
Carbohydrates
chemical conversion
Chemical reduction
desalination
Graphene
graphene oxide
Maltose
Membranes
Molecular properties
nanochannel membrane
Nanochannels
Separation
Stability
Stabilization
title Nanochannel Stability of Chemically Converted Graphene Oxide Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanochannel%20Stability%20of%20Chemically%20Converted%20Graphene%20Oxide%20Membranes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhou,%20Siyu&rft.date=2024-08-01&rft.volume=20&rft.issue=34&rft.spage=e2311237&rft.epage=n/a&rft.pages=e2311237-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202311237&rft_dat=%3Cproquest_cross%3E3095503952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095503952&rft_id=info:pmid/38593376&rfr_iscdi=true