Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation

Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid‐liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-06, Vol.63 (25), p.e202404018-n/a
Hauptverfasser: Norrild, Rasmus K., Mason, Thomas O., Boyens‐Thiele, Lars, Ray, Soumik, Mortensen, Joachim B., Fritsch, Anatol W., Iglesias‐Artola, Juan M., Klausen, Louise K., Stender, Emil G. P., Jensen, Henrik, Buell, Alexander K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page e202404018
container_title Angewandte Chemie International Edition
container_volume 63
creator Norrild, Rasmus K.
Mason, Thomas O.
Boyens‐Thiele, Lars
Ray, Soumik
Mortensen, Joachim B.
Fritsch, Anatol W.
Iglesias‐Artola, Juan M.
Klausen, Louise K.
Stender, Emil G. P.
Jensen, Henrik
Buell, Alexander K.
description Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid‐liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility to modulate it with drugs. Here we present Taylor dispersion‐induced phase separation (TDIPS), a method to robustly measure condensation phenomena using a commercially available microfluidic platform. It uses only nanoliters of sample, does not require extrinsic fluorescent labels, and is straightforward to implement. We demonstrate TDIPS by screening the phase behaviour of two proteins that form biomolecular condensates in vivo, PGL‐3 and Ddx4. Uniquely accessible to this method, we find an unexpected re‐entrant behaviour at very low ionic strength, where LLPS is inhibited for both proteins. TDIPS can also probe the reversibility of assemblies, which was shown for both α‐synuclein and for lysozyme, relevant for health and biotechnology, respectively. Finally, we highlight how effective inhibition concentrations and partitioning of LLPS‐modifying compounds can be screened highly efficiently. Protein phase separation (PPS) is important in functional and disease biology but is challenging to study. We present Taylor dispersion induced phase separation (TDIPS) to study PPS in a reaction‐diffusion system inside a microfluidic capillary. The resulting data is highly information‐rich and allows for thermodynamic analysis but also efficient screening campaigns of phase separation‐modulating compounds using only nanoliters of sample per data point.
doi_str_mv 10.1002/anie.202404018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065803967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-d1981caf990f9a282cbec2076007130b70dd9cc1b867594c6b46943f09fe3ee43</originalsourceid><addsrcrecordid>eNqF0U9rFDEYBvAgiq3Vq0cJeOll1jeTmfw5lnVrF4otWM9DJvOGTZlN1mQG2Vs_gp_RT2LqthW89JSQ55eHkJeQ9wwWDKD-ZILHRQ11Aw0w9YIcs7ZmFZeSvyz7hvNKqpYdkTc53xavFIjX5IirVvNa6GMSb8x-jIl-9nmHKfsYft_9WodhtjjQ643JSL_hziQzlYi6IqcN0pVz3noME11uSmYnTD4fSHT0OsUJfaDLGAYM5RzpeUzbv_lb8sqZMeO7h_WEfD9f3SwvqsurL-vl2WVluVCqGphWzBqnNThtalXbHm0NUgBIxqGXMAzaWtYrIVvdWNE3QjfcgXbIERt-Qk4PvbsUf8yYp27rs8VxNAHjnDsOvG25lrwt9ON_9DbOKZTXFSVaBVwLWdTioGyKOSd03S75rUn7jkF3P4rufhTd0yjKhQ8PtXO_xeGJP_59AfoAfvoR98_UdWdf16t_5X8ASeuW2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065803967</pqid></control><display><type>article</type><title>Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Norrild, Rasmus K. ; Mason, Thomas O. ; Boyens‐Thiele, Lars ; Ray, Soumik ; Mortensen, Joachim B. ; Fritsch, Anatol W. ; Iglesias‐Artola, Juan M. ; Klausen, Louise K. ; Stender, Emil G. P. ; Jensen, Henrik ; Buell, Alexander K.</creator><creatorcontrib>Norrild, Rasmus K. ; Mason, Thomas O. ; Boyens‐Thiele, Lars ; Ray, Soumik ; Mortensen, Joachim B. ; Fritsch, Anatol W. ; Iglesias‐Artola, Juan M. ; Klausen, Louise K. ; Stender, Emil G. P. ; Jensen, Henrik ; Buell, Alexander K.</creatorcontrib><description>Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid‐liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility to modulate it with drugs. Here we present Taylor dispersion‐induced phase separation (TDIPS), a method to robustly measure condensation phenomena using a commercially available microfluidic platform. It uses only nanoliters of sample, does not require extrinsic fluorescent labels, and is straightforward to implement. We demonstrate TDIPS by screening the phase behaviour of two proteins that form biomolecular condensates in vivo, PGL‐3 and Ddx4. Uniquely accessible to this method, we find an unexpected re‐entrant behaviour at very low ionic strength, where LLPS is inhibited for both proteins. TDIPS can also probe the reversibility of assemblies, which was shown for both α‐synuclein and for lysozyme, relevant for health and biotechnology, respectively. Finally, we highlight how effective inhibition concentrations and partitioning of LLPS‐modifying compounds can be screened highly efficiently. Protein phase separation (PPS) is important in functional and disease biology but is challenging to study. We present Taylor dispersion induced phase separation (TDIPS) to study PPS in a reaction‐diffusion system inside a microfluidic capillary. The resulting data is highly information‐rich and allows for thermodynamic analysis but also efficient screening campaigns of phase separation‐modulating compounds using only nanoliters of sample per data point.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202404018</identifier><identifier>PMID: 38593269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>alpha-Synuclein - chemistry ; alpha-Synuclein - isolation &amp; purification ; alpha-Synuclein - metabolism ; biomolecular condensates ; Biomolecular Condensates - chemistry ; Biomolecular Condensates - metabolism ; Biotechnology ; Cellular structure ; Condensates ; DEAD-box RNA Helicases - chemistry ; DEAD-box RNA Helicases - metabolism ; drug screening ; Fluorescence ; Humans ; In vivo methods and tests ; Ionic strength ; Liquid phases ; liquid-liquid phase separation ; Lysozyme ; Microfluidics ; Muramidase - chemistry ; Muramidase - isolation &amp; purification ; Muramidase - metabolism ; Phase Separation ; protein solubility ; Proteins ; Synuclein</subject><ispartof>Angewandte Chemie International Edition, 2024-06, Vol.63 (25), p.e202404018-n/a</ispartof><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3688-d1981caf990f9a282cbec2076007130b70dd9cc1b867594c6b46943f09fe3ee43</cites><orcidid>0000-0002-5146-349X ; 0000-0002-1933-5471 ; 0000-0003-1161-3622 ; 0000-0002-9120-2745 ; 0000-0002-0409-795X ; 0000-0003-2011-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202404018$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202404018$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norrild, Rasmus K.</creatorcontrib><creatorcontrib>Mason, Thomas O.</creatorcontrib><creatorcontrib>Boyens‐Thiele, Lars</creatorcontrib><creatorcontrib>Ray, Soumik</creatorcontrib><creatorcontrib>Mortensen, Joachim B.</creatorcontrib><creatorcontrib>Fritsch, Anatol W.</creatorcontrib><creatorcontrib>Iglesias‐Artola, Juan M.</creatorcontrib><creatorcontrib>Klausen, Louise K.</creatorcontrib><creatorcontrib>Stender, Emil G. P.</creatorcontrib><creatorcontrib>Jensen, Henrik</creatorcontrib><creatorcontrib>Buell, Alexander K.</creatorcontrib><title>Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid‐liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility to modulate it with drugs. Here we present Taylor dispersion‐induced phase separation (TDIPS), a method to robustly measure condensation phenomena using a commercially available microfluidic platform. It uses only nanoliters of sample, does not require extrinsic fluorescent labels, and is straightforward to implement. We demonstrate TDIPS by screening the phase behaviour of two proteins that form biomolecular condensates in vivo, PGL‐3 and Ddx4. Uniquely accessible to this method, we find an unexpected re‐entrant behaviour at very low ionic strength, where LLPS is inhibited for both proteins. TDIPS can also probe the reversibility of assemblies, which was shown for both α‐synuclein and for lysozyme, relevant for health and biotechnology, respectively. Finally, we highlight how effective inhibition concentrations and partitioning of LLPS‐modifying compounds can be screened highly efficiently. Protein phase separation (PPS) is important in functional and disease biology but is challenging to study. We present Taylor dispersion induced phase separation (TDIPS) to study PPS in a reaction‐diffusion system inside a microfluidic capillary. The resulting data is highly information‐rich and allows for thermodynamic analysis but also efficient screening campaigns of phase separation‐modulating compounds using only nanoliters of sample per data point.</description><subject>alpha-Synuclein - chemistry</subject><subject>alpha-Synuclein - isolation &amp; purification</subject><subject>alpha-Synuclein - metabolism</subject><subject>biomolecular condensates</subject><subject>Biomolecular Condensates - chemistry</subject><subject>Biomolecular Condensates - metabolism</subject><subject>Biotechnology</subject><subject>Cellular structure</subject><subject>Condensates</subject><subject>DEAD-box RNA Helicases - chemistry</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>drug screening</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Ionic strength</subject><subject>Liquid phases</subject><subject>liquid-liquid phase separation</subject><subject>Lysozyme</subject><subject>Microfluidics</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - isolation &amp; purification</subject><subject>Muramidase - metabolism</subject><subject>Phase Separation</subject><subject>protein solubility</subject><subject>Proteins</subject><subject>Synuclein</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U9rFDEYBvAgiq3Vq0cJeOll1jeTmfw5lnVrF4otWM9DJvOGTZlN1mQG2Vs_gp_RT2LqthW89JSQ55eHkJeQ9wwWDKD-ZILHRQ11Aw0w9YIcs7ZmFZeSvyz7hvNKqpYdkTc53xavFIjX5IirVvNa6GMSb8x-jIl-9nmHKfsYft_9WodhtjjQ643JSL_hziQzlYi6IqcN0pVz3noME11uSmYnTD4fSHT0OsUJfaDLGAYM5RzpeUzbv_lb8sqZMeO7h_WEfD9f3SwvqsurL-vl2WVluVCqGphWzBqnNThtalXbHm0NUgBIxqGXMAzaWtYrIVvdWNE3QjfcgXbIERt-Qk4PvbsUf8yYp27rs8VxNAHjnDsOvG25lrwt9ON_9DbOKZTXFSVaBVwLWdTioGyKOSd03S75rUn7jkF3P4rufhTd0yjKhQ8PtXO_xeGJP_59AfoAfvoR98_UdWdf16t_5X8ASeuW2g</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Norrild, Rasmus K.</creator><creator>Mason, Thomas O.</creator><creator>Boyens‐Thiele, Lars</creator><creator>Ray, Soumik</creator><creator>Mortensen, Joachim B.</creator><creator>Fritsch, Anatol W.</creator><creator>Iglesias‐Artola, Juan M.</creator><creator>Klausen, Louise K.</creator><creator>Stender, Emil G. P.</creator><creator>Jensen, Henrik</creator><creator>Buell, Alexander K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5146-349X</orcidid><orcidid>https://orcid.org/0000-0002-1933-5471</orcidid><orcidid>https://orcid.org/0000-0003-1161-3622</orcidid><orcidid>https://orcid.org/0000-0002-9120-2745</orcidid><orcidid>https://orcid.org/0000-0002-0409-795X</orcidid><orcidid>https://orcid.org/0000-0003-2011-7452</orcidid></search><sort><creationdate>20240617</creationdate><title>Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation</title><author>Norrild, Rasmus K. ; Mason, Thomas O. ; Boyens‐Thiele, Lars ; Ray, Soumik ; Mortensen, Joachim B. ; Fritsch, Anatol W. ; Iglesias‐Artola, Juan M. ; Klausen, Louise K. ; Stender, Emil G. P. ; Jensen, Henrik ; Buell, Alexander K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-d1981caf990f9a282cbec2076007130b70dd9cc1b867594c6b46943f09fe3ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alpha-Synuclein - chemistry</topic><topic>alpha-Synuclein - isolation &amp; purification</topic><topic>alpha-Synuclein - metabolism</topic><topic>biomolecular condensates</topic><topic>Biomolecular Condensates - chemistry</topic><topic>Biomolecular Condensates - metabolism</topic><topic>Biotechnology</topic><topic>Cellular structure</topic><topic>Condensates</topic><topic>DEAD-box RNA Helicases - chemistry</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>drug screening</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Ionic strength</topic><topic>Liquid phases</topic><topic>liquid-liquid phase separation</topic><topic>Lysozyme</topic><topic>Microfluidics</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - isolation &amp; purification</topic><topic>Muramidase - metabolism</topic><topic>Phase Separation</topic><topic>protein solubility</topic><topic>Proteins</topic><topic>Synuclein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norrild, Rasmus K.</creatorcontrib><creatorcontrib>Mason, Thomas O.</creatorcontrib><creatorcontrib>Boyens‐Thiele, Lars</creatorcontrib><creatorcontrib>Ray, Soumik</creatorcontrib><creatorcontrib>Mortensen, Joachim B.</creatorcontrib><creatorcontrib>Fritsch, Anatol W.</creatorcontrib><creatorcontrib>Iglesias‐Artola, Juan M.</creatorcontrib><creatorcontrib>Klausen, Louise K.</creatorcontrib><creatorcontrib>Stender, Emil G. P.</creatorcontrib><creatorcontrib>Jensen, Henrik</creatorcontrib><creatorcontrib>Buell, Alexander K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norrild, Rasmus K.</au><au>Mason, Thomas O.</au><au>Boyens‐Thiele, Lars</au><au>Ray, Soumik</au><au>Mortensen, Joachim B.</au><au>Fritsch, Anatol W.</au><au>Iglesias‐Artola, Juan M.</au><au>Klausen, Louise K.</au><au>Stender, Emil G. P.</au><au>Jensen, Henrik</au><au>Buell, Alexander K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-06-17</date><risdate>2024</risdate><volume>63</volume><issue>25</issue><spage>e202404018</spage><epage>n/a</epage><pages>e202404018-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid‐liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility to modulate it with drugs. Here we present Taylor dispersion‐induced phase separation (TDIPS), a method to robustly measure condensation phenomena using a commercially available microfluidic platform. It uses only nanoliters of sample, does not require extrinsic fluorescent labels, and is straightforward to implement. We demonstrate TDIPS by screening the phase behaviour of two proteins that form biomolecular condensates in vivo, PGL‐3 and Ddx4. Uniquely accessible to this method, we find an unexpected re‐entrant behaviour at very low ionic strength, where LLPS is inhibited for both proteins. TDIPS can also probe the reversibility of assemblies, which was shown for both α‐synuclein and for lysozyme, relevant for health and biotechnology, respectively. Finally, we highlight how effective inhibition concentrations and partitioning of LLPS‐modifying compounds can be screened highly efficiently. Protein phase separation (PPS) is important in functional and disease biology but is challenging to study. We present Taylor dispersion induced phase separation (TDIPS) to study PPS in a reaction‐diffusion system inside a microfluidic capillary. The resulting data is highly information‐rich and allows for thermodynamic analysis but also efficient screening campaigns of phase separation‐modulating compounds using only nanoliters of sample per data point.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38593269</pmid><doi>10.1002/anie.202404018</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-5146-349X</orcidid><orcidid>https://orcid.org/0000-0002-1933-5471</orcidid><orcidid>https://orcid.org/0000-0003-1161-3622</orcidid><orcidid>https://orcid.org/0000-0002-9120-2745</orcidid><orcidid>https://orcid.org/0000-0002-0409-795X</orcidid><orcidid>https://orcid.org/0000-0003-2011-7452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-06, Vol.63 (25), p.e202404018-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3035539735
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects alpha-Synuclein - chemistry
alpha-Synuclein - isolation & purification
alpha-Synuclein - metabolism
biomolecular condensates
Biomolecular Condensates - chemistry
Biomolecular Condensates - metabolism
Biotechnology
Cellular structure
Condensates
DEAD-box RNA Helicases - chemistry
DEAD-box RNA Helicases - metabolism
drug screening
Fluorescence
Humans
In vivo methods and tests
Ionic strength
Liquid phases
liquid-liquid phase separation
Lysozyme
Microfluidics
Muramidase - chemistry
Muramidase - isolation & purification
Muramidase - metabolism
Phase Separation
protein solubility
Proteins
Synuclein
title Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taylor%20Dispersion%E2%80%90Induced%20Phase%20Separation%20for%20the%20Efficient%20Characterisation%20of%20Protein%20Condensate%20Formation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Norrild,%20Rasmus%20K.&rft.date=2024-06-17&rft.volume=63&rft.issue=25&rft.spage=e202404018&rft.epage=n/a&rft.pages=e202404018-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202404018&rft_dat=%3Cproquest_cross%3E3065803967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065803967&rft_id=info:pmid/38593269&rfr_iscdi=true