Genetic interactions reveal distinct biological and therapeutic implications in breast cancer
Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-sc...
Gespeichert in:
Veröffentlicht in: | Cancer cell 2024-04, Vol.42 (4), p.701-719.e12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 719.e12 |
---|---|
container_issue | 4 |
container_start_page | 701 |
container_title | Cancer cell |
container_volume | 42 |
creator | Lin, Cai-Jin Jin, Xi Ma, Ding Chen, Chao Ou-Yang, Yang Pei, Yu-Chen Zhou, Chao-Zheng Qu, Fei-Lin Wang, Yun-Jin Liu, Cheng-Lin Fan, Lei Hu, Xin Shao, Zhi-Ming Jiang, Yi-Zhou |
description | Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
[Display omitted]
•We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations
Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond. |
doi_str_mv | 10.1016/j.ccell.2024.03.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535610824000916</els_id><sourcerecordid>3035539449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f5d420a09e0bf235129b2b7545466376ee09765b4ab66751c122f388e86e4943</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoPka_QJAu3bTm3WThQgZfILiZrYQ0vdUMnXZMMgP-vZmpunSVkJyTSw5ClwRXBBN5s6ycg76vKKa8wqzCWB6gU6JqVTKp5GHeCyZKSbA6QWcxLnG2SK2P0QlTQrNa0VP09ggDJO8KPyQI1iU_DrEIsAXbF62PyQ8uFY0f-_Hdu3xmh7ZIHxldw2bvrdZ9vpg8PxRNABtT4ezgIJyjo872ES5-1hlaPNwv5k_ly-vj8_zupXQM61R2ouUUW6wBNx1lglDd0KYWXHApWS0BsK6laLhtpKwFcYTSjikFSgLXnM3Q9fTsOoyfG4jJrHzctbEDjJtoGGZCMM25ziibUBfGGAN0Zh38yoYvQ7DZZTVLs89qdlkNZiZnzdbVz4BNs4L2z_ntmIHbCYD8y62HYKLzkBO0PoBLph39vwO-ASJviiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035539449</pqid></control><display><type>article</type><title>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Cai-Jin ; Jin, Xi ; Ma, Ding ; Chen, Chao ; Ou-Yang, Yang ; Pei, Yu-Chen ; Zhou, Chao-Zheng ; Qu, Fei-Lin ; Wang, Yun-Jin ; Liu, Cheng-Lin ; Fan, Lei ; Hu, Xin ; Shao, Zhi-Ming ; Jiang, Yi-Zhou</creator><creatorcontrib>Lin, Cai-Jin ; Jin, Xi ; Ma, Ding ; Chen, Chao ; Ou-Yang, Yang ; Pei, Yu-Chen ; Zhou, Chao-Zheng ; Qu, Fei-Lin ; Wang, Yun-Jin ; Liu, Cheng-Lin ; Fan, Lei ; Hu, Xin ; Shao, Zhi-Ming ; Jiang, Yi-Zhou</creatorcontrib><description>Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
[Display omitted]
•We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations
Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.</description><identifier>ISSN: 1535-6108</identifier><identifier>ISSN: 1878-3686</identifier><identifier>EISSN: 1878-3686</identifier><identifier>DOI: 10.1016/j.ccell.2024.03.006</identifier><identifier>PMID: 38593782</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; clinical sequencing ; co-occurrence ; Female ; Genomics ; Humans ; multi-omics ; Mutation ; mutual exclusivity ; Phenotype ; precision treatment ; Treatment Outcome</subject><ispartof>Cancer cell, 2024-04, Vol.42 (4), p.701-719.e12</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-f5d420a09e0bf235129b2b7545466376ee09765b4ab66751c122f388e86e4943</cites><orcidid>0000-0002-4503-148X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ccell.2024.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Cai-Jin</creatorcontrib><creatorcontrib>Jin, Xi</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Ou-Yang, Yang</creatorcontrib><creatorcontrib>Pei, Yu-Chen</creatorcontrib><creatorcontrib>Zhou, Chao-Zheng</creatorcontrib><creatorcontrib>Qu, Fei-Lin</creatorcontrib><creatorcontrib>Wang, Yun-Jin</creatorcontrib><creatorcontrib>Liu, Cheng-Lin</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Shao, Zhi-Ming</creatorcontrib><creatorcontrib>Jiang, Yi-Zhou</creatorcontrib><title>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</title><title>Cancer cell</title><addtitle>Cancer Cell</addtitle><description>Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
[Display omitted]
•We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations
Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.</description><subject>breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>clinical sequencing</subject><subject>co-occurrence</subject><subject>Female</subject><subject>Genomics</subject><subject>Humans</subject><subject>multi-omics</subject><subject>Mutation</subject><subject>mutual exclusivity</subject><subject>Phenotype</subject><subject>precision treatment</subject><subject>Treatment Outcome</subject><issn>1535-6108</issn><issn>1878-3686</issn><issn>1878-3686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUQIMoPka_QJAu3bTm3WThQgZfILiZrYQ0vdUMnXZMMgP-vZmpunSVkJyTSw5ClwRXBBN5s6ycg76vKKa8wqzCWB6gU6JqVTKp5GHeCyZKSbA6QWcxLnG2SK2P0QlTQrNa0VP09ggDJO8KPyQI1iU_DrEIsAXbF62PyQ8uFY0f-_Hdu3xmh7ZIHxldw2bvrdZ9vpg8PxRNABtT4ezgIJyjo872ES5-1hlaPNwv5k_ly-vj8_zupXQM61R2ouUUW6wBNx1lglDd0KYWXHApWS0BsK6laLhtpKwFcYTSjikFSgLXnM3Q9fTsOoyfG4jJrHzctbEDjJtoGGZCMM25ziibUBfGGAN0Zh38yoYvQ7DZZTVLs89qdlkNZiZnzdbVz4BNs4L2z_ntmIHbCYD8y62HYKLzkBO0PoBLph39vwO-ASJviiM</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Lin, Cai-Jin</creator><creator>Jin, Xi</creator><creator>Ma, Ding</creator><creator>Chen, Chao</creator><creator>Ou-Yang, Yang</creator><creator>Pei, Yu-Chen</creator><creator>Zhou, Chao-Zheng</creator><creator>Qu, Fei-Lin</creator><creator>Wang, Yun-Jin</creator><creator>Liu, Cheng-Lin</creator><creator>Fan, Lei</creator><creator>Hu, Xin</creator><creator>Shao, Zhi-Ming</creator><creator>Jiang, Yi-Zhou</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4503-148X</orcidid></search><sort><creationdate>20240408</creationdate><title>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</title><author>Lin, Cai-Jin ; Jin, Xi ; Ma, Ding ; Chen, Chao ; Ou-Yang, Yang ; Pei, Yu-Chen ; Zhou, Chao-Zheng ; Qu, Fei-Lin ; Wang, Yun-Jin ; Liu, Cheng-Lin ; Fan, Lei ; Hu, Xin ; Shao, Zhi-Ming ; Jiang, Yi-Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f5d420a09e0bf235129b2b7545466376ee09765b4ab66751c122f388e86e4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>clinical sequencing</topic><topic>co-occurrence</topic><topic>Female</topic><topic>Genomics</topic><topic>Humans</topic><topic>multi-omics</topic><topic>Mutation</topic><topic>mutual exclusivity</topic><topic>Phenotype</topic><topic>precision treatment</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cai-Jin</creatorcontrib><creatorcontrib>Jin, Xi</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Ou-Yang, Yang</creatorcontrib><creatorcontrib>Pei, Yu-Chen</creatorcontrib><creatorcontrib>Zhou, Chao-Zheng</creatorcontrib><creatorcontrib>Qu, Fei-Lin</creatorcontrib><creatorcontrib>Wang, Yun-Jin</creatorcontrib><creatorcontrib>Liu, Cheng-Lin</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Shao, Zhi-Ming</creatorcontrib><creatorcontrib>Jiang, Yi-Zhou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cai-Jin</au><au>Jin, Xi</au><au>Ma, Ding</au><au>Chen, Chao</au><au>Ou-Yang, Yang</au><au>Pei, Yu-Chen</au><au>Zhou, Chao-Zheng</au><au>Qu, Fei-Lin</au><au>Wang, Yun-Jin</au><au>Liu, Cheng-Lin</au><au>Fan, Lei</au><au>Hu, Xin</au><au>Shao, Zhi-Ming</au><au>Jiang, Yi-Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</atitle><jtitle>Cancer cell</jtitle><addtitle>Cancer Cell</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>42</volume><issue>4</issue><spage>701</spage><epage>719.e12</epage><pages>701-719.e12</pages><issn>1535-6108</issn><issn>1878-3686</issn><eissn>1878-3686</eissn><abstract>Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
[Display omitted]
•We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations
Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38593782</pmid><doi>10.1016/j.ccell.2024.03.006</doi><orcidid>https://orcid.org/0000-0002-4503-148X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-6108 |
ispartof | Cancer cell, 2024-04, Vol.42 (4), p.701-719.e12 |
issn | 1535-6108 1878-3686 1878-3686 |
language | eng |
recordid | cdi_proquest_miscellaneous_3035539449 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - genetics Breast Neoplasms - pathology clinical sequencing co-occurrence Female Genomics Humans multi-omics Mutation mutual exclusivity Phenotype precision treatment Treatment Outcome |
title | Genetic interactions reveal distinct biological and therapeutic implications in breast cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20interactions%20reveal%20distinct%20biological%20and%20therapeutic%20implications%20in%20breast%20cancer&rft.jtitle=Cancer%20cell&rft.au=Lin,%20Cai-Jin&rft.date=2024-04-08&rft.volume=42&rft.issue=4&rft.spage=701&rft.epage=719.e12&rft.pages=701-719.e12&rft.issn=1535-6108&rft.eissn=1878-3686&rft_id=info:doi/10.1016/j.ccell.2024.03.006&rft_dat=%3Cproquest_cross%3E3035539449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035539449&rft_id=info:pmid/38593782&rft_els_id=S1535610824000916&rfr_iscdi=true |