Genetic interactions reveal distinct biological and therapeutic implications in breast cancer

Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer cell 2024-04, Vol.42 (4), p.701-719.e12
Hauptverfasser: Lin, Cai-Jin, Jin, Xi, Ma, Ding, Chen, Chao, Ou-Yang, Yang, Pei, Yu-Chen, Zhou, Chao-Zheng, Qu, Fei-Lin, Wang, Yun-Jin, Liu, Cheng-Lin, Fan, Lei, Hu, Xin, Shao, Zhi-Ming, Jiang, Yi-Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 719.e12
container_issue 4
container_start_page 701
container_title Cancer cell
container_volume 42
creator Lin, Cai-Jin
Jin, Xi
Ma, Ding
Chen, Chao
Ou-Yang, Yang
Pei, Yu-Chen
Zhou, Chao-Zheng
Qu, Fei-Lin
Wang, Yun-Jin
Liu, Cheng-Lin
Fan, Lei
Hu, Xin
Shao, Zhi-Ming
Jiang, Yi-Zhou
description Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations. [Display omitted] •We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.
doi_str_mv 10.1016/j.ccell.2024.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035539449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535610824000916</els_id><sourcerecordid>3035539449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f5d420a09e0bf235129b2b7545466376ee09765b4ab66751c122f388e86e4943</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoPka_QJAu3bTm3WThQgZfILiZrYQ0vdUMnXZMMgP-vZmpunSVkJyTSw5ClwRXBBN5s6ycg76vKKa8wqzCWB6gU6JqVTKp5GHeCyZKSbA6QWcxLnG2SK2P0QlTQrNa0VP09ggDJO8KPyQI1iU_DrEIsAXbF62PyQ8uFY0f-_Hdu3xmh7ZIHxldw2bvrdZ9vpg8PxRNABtT4ezgIJyjo872ES5-1hlaPNwv5k_ly-vj8_zupXQM61R2ouUUW6wBNx1lglDd0KYWXHApWS0BsK6laLhtpKwFcYTSjikFSgLXnM3Q9fTsOoyfG4jJrHzctbEDjJtoGGZCMM25ziibUBfGGAN0Zh38yoYvQ7DZZTVLs89qdlkNZiZnzdbVz4BNs4L2z_ntmIHbCYD8y62HYKLzkBO0PoBLph39vwO-ASJviiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035539449</pqid></control><display><type>article</type><title>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Cai-Jin ; Jin, Xi ; Ma, Ding ; Chen, Chao ; Ou-Yang, Yang ; Pei, Yu-Chen ; Zhou, Chao-Zheng ; Qu, Fei-Lin ; Wang, Yun-Jin ; Liu, Cheng-Lin ; Fan, Lei ; Hu, Xin ; Shao, Zhi-Ming ; Jiang, Yi-Zhou</creator><creatorcontrib>Lin, Cai-Jin ; Jin, Xi ; Ma, Ding ; Chen, Chao ; Ou-Yang, Yang ; Pei, Yu-Chen ; Zhou, Chao-Zheng ; Qu, Fei-Lin ; Wang, Yun-Jin ; Liu, Cheng-Lin ; Fan, Lei ; Hu, Xin ; Shao, Zhi-Ming ; Jiang, Yi-Zhou</creatorcontrib><description>Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations. [Display omitted] •We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.</description><identifier>ISSN: 1535-6108</identifier><identifier>ISSN: 1878-3686</identifier><identifier>EISSN: 1878-3686</identifier><identifier>DOI: 10.1016/j.ccell.2024.03.006</identifier><identifier>PMID: 38593782</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; clinical sequencing ; co-occurrence ; Female ; Genomics ; Humans ; multi-omics ; Mutation ; mutual exclusivity ; Phenotype ; precision treatment ; Treatment Outcome</subject><ispartof>Cancer cell, 2024-04, Vol.42 (4), p.701-719.e12</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-f5d420a09e0bf235129b2b7545466376ee09765b4ab66751c122f388e86e4943</cites><orcidid>0000-0002-4503-148X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ccell.2024.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Cai-Jin</creatorcontrib><creatorcontrib>Jin, Xi</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Ou-Yang, Yang</creatorcontrib><creatorcontrib>Pei, Yu-Chen</creatorcontrib><creatorcontrib>Zhou, Chao-Zheng</creatorcontrib><creatorcontrib>Qu, Fei-Lin</creatorcontrib><creatorcontrib>Wang, Yun-Jin</creatorcontrib><creatorcontrib>Liu, Cheng-Lin</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Shao, Zhi-Ming</creatorcontrib><creatorcontrib>Jiang, Yi-Zhou</creatorcontrib><title>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</title><title>Cancer cell</title><addtitle>Cancer Cell</addtitle><description>Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations. [Display omitted] •We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.</description><subject>breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>clinical sequencing</subject><subject>co-occurrence</subject><subject>Female</subject><subject>Genomics</subject><subject>Humans</subject><subject>multi-omics</subject><subject>Mutation</subject><subject>mutual exclusivity</subject><subject>Phenotype</subject><subject>precision treatment</subject><subject>Treatment Outcome</subject><issn>1535-6108</issn><issn>1878-3686</issn><issn>1878-3686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUQIMoPka_QJAu3bTm3WThQgZfILiZrYQ0vdUMnXZMMgP-vZmpunSVkJyTSw5ClwRXBBN5s6ycg76vKKa8wqzCWB6gU6JqVTKp5GHeCyZKSbA6QWcxLnG2SK2P0QlTQrNa0VP09ggDJO8KPyQI1iU_DrEIsAXbF62PyQ8uFY0f-_Hdu3xmh7ZIHxldw2bvrdZ9vpg8PxRNABtT4ezgIJyjo872ES5-1hlaPNwv5k_ly-vj8_zupXQM61R2ouUUW6wBNx1lglDd0KYWXHApWS0BsK6laLhtpKwFcYTSjikFSgLXnM3Q9fTsOoyfG4jJrHzctbEDjJtoGGZCMM25ziibUBfGGAN0Zh38yoYvQ7DZZTVLs89qdlkNZiZnzdbVz4BNs4L2z_ntmIHbCYD8y62HYKLzkBO0PoBLph39vwO-ASJviiM</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Lin, Cai-Jin</creator><creator>Jin, Xi</creator><creator>Ma, Ding</creator><creator>Chen, Chao</creator><creator>Ou-Yang, Yang</creator><creator>Pei, Yu-Chen</creator><creator>Zhou, Chao-Zheng</creator><creator>Qu, Fei-Lin</creator><creator>Wang, Yun-Jin</creator><creator>Liu, Cheng-Lin</creator><creator>Fan, Lei</creator><creator>Hu, Xin</creator><creator>Shao, Zhi-Ming</creator><creator>Jiang, Yi-Zhou</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4503-148X</orcidid></search><sort><creationdate>20240408</creationdate><title>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</title><author>Lin, Cai-Jin ; Jin, Xi ; Ma, Ding ; Chen, Chao ; Ou-Yang, Yang ; Pei, Yu-Chen ; Zhou, Chao-Zheng ; Qu, Fei-Lin ; Wang, Yun-Jin ; Liu, Cheng-Lin ; Fan, Lei ; Hu, Xin ; Shao, Zhi-Ming ; Jiang, Yi-Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f5d420a09e0bf235129b2b7545466376ee09765b4ab66751c122f388e86e4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>clinical sequencing</topic><topic>co-occurrence</topic><topic>Female</topic><topic>Genomics</topic><topic>Humans</topic><topic>multi-omics</topic><topic>Mutation</topic><topic>mutual exclusivity</topic><topic>Phenotype</topic><topic>precision treatment</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cai-Jin</creatorcontrib><creatorcontrib>Jin, Xi</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Ou-Yang, Yang</creatorcontrib><creatorcontrib>Pei, Yu-Chen</creatorcontrib><creatorcontrib>Zhou, Chao-Zheng</creatorcontrib><creatorcontrib>Qu, Fei-Lin</creatorcontrib><creatorcontrib>Wang, Yun-Jin</creatorcontrib><creatorcontrib>Liu, Cheng-Lin</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Shao, Zhi-Ming</creatorcontrib><creatorcontrib>Jiang, Yi-Zhou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cai-Jin</au><au>Jin, Xi</au><au>Ma, Ding</au><au>Chen, Chao</au><au>Ou-Yang, Yang</au><au>Pei, Yu-Chen</au><au>Zhou, Chao-Zheng</au><au>Qu, Fei-Lin</au><au>Wang, Yun-Jin</au><au>Liu, Cheng-Lin</au><au>Fan, Lei</au><au>Hu, Xin</au><au>Shao, Zhi-Ming</au><au>Jiang, Yi-Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic interactions reveal distinct biological and therapeutic implications in breast cancer</atitle><jtitle>Cancer cell</jtitle><addtitle>Cancer Cell</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>42</volume><issue>4</issue><spage>701</spage><epage>719.e12</epage><pages>701-719.e12</pages><issn>1535-6108</issn><issn>1878-3686</issn><eissn>1878-3686</eissn><abstract>Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations. [Display omitted] •We built a large multi-omics cohort and a real-world clinical sequencing cohort•A genetic interaction network involves co-occurring and mutually exclusive events•Co-alterations influence treatment outcomes across diverse clinical scenarios•Genome-informed treatment decisions should extend beyond single driver alterations Lin et al. leverage a large-scale multi-omics cohort and a real-world clinical sequencing cohort to explore genetic interactions and their impact on treatment outcomes across various clinical scenarios in breast cancer. These findings underscore the importance of making genome-informed precision treatment decisions that consider individual driver alterations and beyond.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38593782</pmid><doi>10.1016/j.ccell.2024.03.006</doi><orcidid>https://orcid.org/0000-0002-4503-148X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-6108
ispartof Cancer cell, 2024-04, Vol.42 (4), p.701-719.e12
issn 1535-6108
1878-3686
1878-3686
language eng
recordid cdi_proquest_miscellaneous_3035539449
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - genetics
Breast Neoplasms - pathology
clinical sequencing
co-occurrence
Female
Genomics
Humans
multi-omics
Mutation
mutual exclusivity
Phenotype
precision treatment
Treatment Outcome
title Genetic interactions reveal distinct biological and therapeutic implications in breast cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20interactions%20reveal%20distinct%20biological%20and%20therapeutic%20implications%20in%20breast%20cancer&rft.jtitle=Cancer%20cell&rft.au=Lin,%20Cai-Jin&rft.date=2024-04-08&rft.volume=42&rft.issue=4&rft.spage=701&rft.epage=719.e12&rft.pages=701-719.e12&rft.issn=1535-6108&rft.eissn=1878-3686&rft_id=info:doi/10.1016/j.ccell.2024.03.006&rft_dat=%3Cproquest_cross%3E3035539449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035539449&rft_id=info:pmid/38593782&rft_els_id=S1535610824000916&rfr_iscdi=true