Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series

Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACC. Clinical electrophysiology 2024-04, Vol.10 (4), p.775-789
Hauptverfasser: Lopez-Jimenez, Francisco, Kapa, Suraj, Friedman, Paul A, LeBrasseur, Nathan K, Klavetter, Eric, Mangold, Kathryn E, Attia, Zachi I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 4
container_start_page 775
container_title JACC. Clinical electrophysiology
container_volume 10
creator Lopez-Jimenez, Francisco
Kapa, Suraj
Friedman, Paul A
LeBrasseur, Nathan K
Klavetter, Eric
Mangold, Kathryn E
Attia, Zachi I
description Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.
doi_str_mv 10.1016/j.jacep.2024.02.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035536381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035536381</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-b3298b64842838eddf91e85a655df28a738b5d4f6908a0134c8038069adad1c03</originalsourceid><addsrcrecordid>eNo1kE1Lw0AYhBdBbKn9BYLs0Uviu7vZ9I23GNpaKSjYnsMm2cSN-TKbCP33Rq2ngeGZYRhCbhi4DJh_X7qlSnXncuCeC9wFxi7InHsgHQkMZ2RpbQkATHLkzLsiM4EyWKGUc_IRWqutNU1BH01btYVJVUXDQj_Qw7umr-2gm8FMVpvTdbSl6y9VjWowbUOPv6mwH0xu0h9k1wy6qkyhm3SKP4dRRDeqNtWJvuneaHtNLnNVWb0864IcN-tD9OTsX7a7KNw7HWdscBLBA0x8Dz2OAnWW5QHTKJUvZZZzVCuBicy83A8AFTDhpQgCwQ9UpjKWgliQu7_erm8_R22HuDY2naapRrejjQUIKYUvkE3o7Rkdk1pncdebWvWn-P8g8Q2XrGa2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035536381</pqid></control><display><type>article</type><title>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</title><source>Alma/SFX Local Collection</source><creator>Lopez-Jimenez, Francisco ; Kapa, Suraj ; Friedman, Paul A ; LeBrasseur, Nathan K ; Klavetter, Eric ; Mangold, Kathryn E ; Attia, Zachi I</creator><creatorcontrib>Lopez-Jimenez, Francisco ; Kapa, Suraj ; Friedman, Paul A ; LeBrasseur, Nathan K ; Klavetter, Eric ; Mangold, Kathryn E ; Attia, Zachi I</creatorcontrib><description>Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.</description><identifier>EISSN: 2405-5018</identifier><identifier>DOI: 10.1016/j.jacep.2024.02.011</identifier><identifier>PMID: 38597855</identifier><language>eng</language><publisher>United States</publisher><ispartof>JACC. Clinical electrophysiology, 2024-04, Vol.10 (4), p.775-789</ispartof><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38597855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Friedman, Paul A</creatorcontrib><creatorcontrib>LeBrasseur, Nathan K</creatorcontrib><creatorcontrib>Klavetter, Eric</creatorcontrib><creatorcontrib>Mangold, Kathryn E</creatorcontrib><creatorcontrib>Attia, Zachi I</creatorcontrib><title>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</title><title>JACC. Clinical electrophysiology</title><addtitle>JACC Clin Electrophysiol</addtitle><description>Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.</description><issn>2405-5018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kE1Lw0AYhBdBbKn9BYLs0Uviu7vZ9I23GNpaKSjYnsMm2cSN-TKbCP33Rq2ngeGZYRhCbhi4DJh_X7qlSnXncuCeC9wFxi7InHsgHQkMZ2RpbQkATHLkzLsiM4EyWKGUc_IRWqutNU1BH01btYVJVUXDQj_Qw7umr-2gm8FMVpvTdbSl6y9VjWowbUOPv6mwH0xu0h9k1wy6qkyhm3SKP4dRRDeqNtWJvuneaHtNLnNVWb0864IcN-tD9OTsX7a7KNw7HWdscBLBA0x8Dz2OAnWW5QHTKJUvZZZzVCuBicy83A8AFTDhpQgCwQ9UpjKWgliQu7_erm8_R22HuDY2naapRrejjQUIKYUvkE3o7Rkdk1pncdebWvWn-P8g8Q2XrGa2</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Lopez-Jimenez, Francisco</creator><creator>Kapa, Suraj</creator><creator>Friedman, Paul A</creator><creator>LeBrasseur, Nathan K</creator><creator>Klavetter, Eric</creator><creator>Mangold, Kathryn E</creator><creator>Attia, Zachi I</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</title><author>Lopez-Jimenez, Francisco ; Kapa, Suraj ; Friedman, Paul A ; LeBrasseur, Nathan K ; Klavetter, Eric ; Mangold, Kathryn E ; Attia, Zachi I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-b3298b64842838eddf91e85a655df28a738b5d4f6908a0134c8038069adad1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Friedman, Paul A</creatorcontrib><creatorcontrib>LeBrasseur, Nathan K</creatorcontrib><creatorcontrib>Klavetter, Eric</creatorcontrib><creatorcontrib>Mangold, Kathryn E</creatorcontrib><creatorcontrib>Attia, Zachi I</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>JACC. Clinical electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Jimenez, Francisco</au><au>Kapa, Suraj</au><au>Friedman, Paul A</au><au>LeBrasseur, Nathan K</au><au>Klavetter, Eric</au><au>Mangold, Kathryn E</au><au>Attia, Zachi I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</atitle><jtitle>JACC. Clinical electrophysiology</jtitle><addtitle>JACC Clin Electrophysiol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>775</spage><epage>789</epage><pages>775-789</pages><eissn>2405-5018</eissn><abstract>Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.</abstract><cop>United States</cop><pmid>38597855</pmid><doi>10.1016/j.jacep.2024.02.011</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2405-5018
ispartof JACC. Clinical electrophysiology, 2024-04, Vol.10 (4), p.775-789
issn 2405-5018
language eng
recordid cdi_proquest_miscellaneous_3035536381
source Alma/SFX Local Collection
title Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Biological%20Age:%20The%20Potential%20of%20ECG%20Evaluation%20Using%20Artificial%20Intelligence:%20JACC%20Family%20Series&rft.jtitle=JACC.%20Clinical%20electrophysiology&rft.au=Lopez-Jimenez,%20Francisco&rft.date=2024-04-01&rft.volume=10&rft.issue=4&rft.spage=775&rft.epage=789&rft.pages=775-789&rft.eissn=2405-5018&rft_id=info:doi/10.1016/j.jacep.2024.02.011&rft_dat=%3Cproquest_pubme%3E3035536381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035536381&rft_id=info:pmid/38597855&rfr_iscdi=true