Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series
Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using d...
Gespeichert in:
Veröffentlicht in: | JACC. Clinical electrophysiology 2024-04, Vol.10 (4), p.775-789 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 4 |
container_start_page | 775 |
container_title | JACC. Clinical electrophysiology |
container_volume | 10 |
creator | Lopez-Jimenez, Francisco Kapa, Suraj Friedman, Paul A LeBrasseur, Nathan K Klavetter, Eric Mangold, Kathryn E Attia, Zachi I |
description | Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age. |
doi_str_mv | 10.1016/j.jacep.2024.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035536381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035536381</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-b3298b64842838eddf91e85a655df28a738b5d4f6908a0134c8038069adad1c03</originalsourceid><addsrcrecordid>eNo1kE1Lw0AYhBdBbKn9BYLs0Uviu7vZ9I23GNpaKSjYnsMm2cSN-TKbCP33Rq2ngeGZYRhCbhi4DJh_X7qlSnXncuCeC9wFxi7InHsgHQkMZ2RpbQkATHLkzLsiM4EyWKGUc_IRWqutNU1BH01btYVJVUXDQj_Qw7umr-2gm8FMVpvTdbSl6y9VjWowbUOPv6mwH0xu0h9k1wy6qkyhm3SKP4dRRDeqNtWJvuneaHtNLnNVWb0864IcN-tD9OTsX7a7KNw7HWdscBLBA0x8Dz2OAnWW5QHTKJUvZZZzVCuBicy83A8AFTDhpQgCwQ9UpjKWgliQu7_erm8_R22HuDY2naapRrejjQUIKYUvkE3o7Rkdk1pncdebWvWn-P8g8Q2XrGa2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035536381</pqid></control><display><type>article</type><title>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</title><source>Alma/SFX Local Collection</source><creator>Lopez-Jimenez, Francisco ; Kapa, Suraj ; Friedman, Paul A ; LeBrasseur, Nathan K ; Klavetter, Eric ; Mangold, Kathryn E ; Attia, Zachi I</creator><creatorcontrib>Lopez-Jimenez, Francisco ; Kapa, Suraj ; Friedman, Paul A ; LeBrasseur, Nathan K ; Klavetter, Eric ; Mangold, Kathryn E ; Attia, Zachi I</creatorcontrib><description>Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.</description><identifier>EISSN: 2405-5018</identifier><identifier>DOI: 10.1016/j.jacep.2024.02.011</identifier><identifier>PMID: 38597855</identifier><language>eng</language><publisher>United States</publisher><ispartof>JACC. Clinical electrophysiology, 2024-04, Vol.10 (4), p.775-789</ispartof><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38597855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Friedman, Paul A</creatorcontrib><creatorcontrib>LeBrasseur, Nathan K</creatorcontrib><creatorcontrib>Klavetter, Eric</creatorcontrib><creatorcontrib>Mangold, Kathryn E</creatorcontrib><creatorcontrib>Attia, Zachi I</creatorcontrib><title>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</title><title>JACC. Clinical electrophysiology</title><addtitle>JACC Clin Electrophysiol</addtitle><description>Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.</description><issn>2405-5018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kE1Lw0AYhBdBbKn9BYLs0Uviu7vZ9I23GNpaKSjYnsMm2cSN-TKbCP33Rq2ngeGZYRhCbhi4DJh_X7qlSnXncuCeC9wFxi7InHsgHQkMZ2RpbQkATHLkzLsiM4EyWKGUc_IRWqutNU1BH01btYVJVUXDQj_Qw7umr-2gm8FMVpvTdbSl6y9VjWowbUOPv6mwH0xu0h9k1wy6qkyhm3SKP4dRRDeqNtWJvuneaHtNLnNVWb0864IcN-tD9OTsX7a7KNw7HWdscBLBA0x8Dz2OAnWW5QHTKJUvZZZzVCuBicy83A8AFTDhpQgCwQ9UpjKWgliQu7_erm8_R22HuDY2naapRrejjQUIKYUvkE3o7Rkdk1pncdebWvWn-P8g8Q2XrGa2</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Lopez-Jimenez, Francisco</creator><creator>Kapa, Suraj</creator><creator>Friedman, Paul A</creator><creator>LeBrasseur, Nathan K</creator><creator>Klavetter, Eric</creator><creator>Mangold, Kathryn E</creator><creator>Attia, Zachi I</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</title><author>Lopez-Jimenez, Francisco ; Kapa, Suraj ; Friedman, Paul A ; LeBrasseur, Nathan K ; Klavetter, Eric ; Mangold, Kathryn E ; Attia, Zachi I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-b3298b64842838eddf91e85a655df28a738b5d4f6908a0134c8038069adad1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Jimenez, Francisco</creatorcontrib><creatorcontrib>Kapa, Suraj</creatorcontrib><creatorcontrib>Friedman, Paul A</creatorcontrib><creatorcontrib>LeBrasseur, Nathan K</creatorcontrib><creatorcontrib>Klavetter, Eric</creatorcontrib><creatorcontrib>Mangold, Kathryn E</creatorcontrib><creatorcontrib>Attia, Zachi I</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>JACC. Clinical electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Jimenez, Francisco</au><au>Kapa, Suraj</au><au>Friedman, Paul A</au><au>LeBrasseur, Nathan K</au><au>Klavetter, Eric</au><au>Mangold, Kathryn E</au><au>Attia, Zachi I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series</atitle><jtitle>JACC. Clinical electrophysiology</jtitle><addtitle>JACC Clin Electrophysiol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>775</spage><epage>789</epage><pages>775-789</pages><eissn>2405-5018</eissn><abstract>Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.</abstract><cop>United States</cop><pmid>38597855</pmid><doi>10.1016/j.jacep.2024.02.011</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2405-5018 |
ispartof | JACC. Clinical electrophysiology, 2024-04, Vol.10 (4), p.775-789 |
issn | 2405-5018 |
language | eng |
recordid | cdi_proquest_miscellaneous_3035536381 |
source | Alma/SFX Local Collection |
title | Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Biological%20Age:%20The%20Potential%20of%20ECG%20Evaluation%20Using%20Artificial%20Intelligence:%20JACC%20Family%20Series&rft.jtitle=JACC.%20Clinical%20electrophysiology&rft.au=Lopez-Jimenez,%20Francisco&rft.date=2024-04-01&rft.volume=10&rft.issue=4&rft.spage=775&rft.epage=789&rft.pages=775-789&rft.eissn=2405-5018&rft_id=info:doi/10.1016/j.jacep.2024.02.011&rft_dat=%3Cproquest_pubme%3E3035536381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035536381&rft_id=info:pmid/38597855&rfr_iscdi=true |