Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators
Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propo...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18898-18907 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18907 |
---|---|
container_issue | 15 |
container_start_page | 18898 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Li, Jialing Mu, Xiaojiang Zhou, Jianhua Zhu, Sijing Gao, Yangfan Wang, Xiaoyang Chen, Jun-Liang Miao, Lei |
description | Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels. |
doi_str_mv | 10.1021/acsami.4c00710 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035075912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153152396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-6d0293b6bc4834e0ba6521351e91c9543f7d8edc278ffd1e9b95096c6dedc98c3</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVpaJyk1x6LjiWwjj7X0jGYxA445JDkvGilkb1Bu3Ilb8H_fZXYyS0EBmYYfu8xzEPoFyVTShi9MjabvpsKS8iMkm9oQrUQlWKSff-YhThFZzm_EFJzRuQPdMqVVEoyMUH5fswZQnU35G2XwOFHCL66dhvI3T_AZnD4KY7rDV7uXYprCBn7mPCN92B3hQh7PI8xdMMaP8ZgEp5DKMybbgOpjxAKmDqLFzBAMruY8gU68SZk-Hns5-j59uZpvqxWD4u7-fWqMpyqXVU7wjRv69YKxQWQ1tSSUS4paGq1FNzPnAJn2Ux578q21ZLo2tauLLWy_Bz9OfhuU_w7Qt41fZdtuc8MEMfccCpLMa7rr1HCJZlJTVlBpwfUpphzAt9sU9ebtG8oaV4zaQ6ZNMdMiuD30Xtse3Af-HsIBbg8AEXYvMQxDeUrn7n9Bwayl3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035075912</pqid></control><display><type>article</type><title>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</title><source>ACS Publications</source><creator>Li, Jialing ; Mu, Xiaojiang ; Zhou, Jianhua ; Zhu, Sijing ; Gao, Yangfan ; Wang, Xiaoyang ; Chen, Jun-Liang ; Miao, Lei</creator><creatorcontrib>Li, Jialing ; Mu, Xiaojiang ; Zhou, Jianhua ; Zhu, Sijing ; Gao, Yangfan ; Wang, Xiaoyang ; Chen, Jun-Liang ; Miao, Lei</creatorcontrib><description>Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c00710</identifier><identifier>PMID: 38588524</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acrylamides ; acrylic acid ; adhesion ; aluminum foil ; catechol ; ceramics ; composite polymers ; cooling ; electricity ; energy conversion ; Energy, Environmental, and Catalysis Applications ; glass ; heat transfer ; hydrogels ; hydrogen ; lighting ; lithium ; longevity ; mussels ; refrigeration ; silicon ; sorption ; tannins ; temperature</subject><ispartof>ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18898-18907</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-6d0293b6bc4834e0ba6521351e91c9543f7d8edc278ffd1e9b95096c6dedc98c3</cites><orcidid>0000-0002-2281-2689 ; 0000-0003-4686-5205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c00710$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c00710$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38588524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jialing</creatorcontrib><creatorcontrib>Mu, Xiaojiang</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Sijing</creatorcontrib><creatorcontrib>Gao, Yangfan</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><title>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.</description><subject>acrylamides</subject><subject>acrylic acid</subject><subject>adhesion</subject><subject>aluminum foil</subject><subject>catechol</subject><subject>ceramics</subject><subject>composite polymers</subject><subject>cooling</subject><subject>electricity</subject><subject>energy conversion</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>glass</subject><subject>heat transfer</subject><subject>hydrogels</subject><subject>hydrogen</subject><subject>lighting</subject><subject>lithium</subject><subject>longevity</subject><subject>mussels</subject><subject>refrigeration</subject><subject>silicon</subject><subject>sorption</subject><subject>tannins</subject><subject>temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rGzEQxUVpaJyk1x6LjiWwjj7X0jGYxA445JDkvGilkb1Bu3Ilb8H_fZXYyS0EBmYYfu8xzEPoFyVTShi9MjabvpsKS8iMkm9oQrUQlWKSff-YhThFZzm_EFJzRuQPdMqVVEoyMUH5fswZQnU35G2XwOFHCL66dhvI3T_AZnD4KY7rDV7uXYprCBn7mPCN92B3hQh7PI8xdMMaP8ZgEp5DKMybbgOpjxAKmDqLFzBAMruY8gU68SZk-Hns5-j59uZpvqxWD4u7-fWqMpyqXVU7wjRv69YKxQWQ1tSSUS4paGq1FNzPnAJn2Ux578q21ZLo2tauLLWy_Bz9OfhuU_w7Qt41fZdtuc8MEMfccCpLMa7rr1HCJZlJTVlBpwfUpphzAt9sU9ebtG8oaV4zaQ6ZNMdMiuD30Xtse3Af-HsIBbg8AEXYvMQxDeUrn7n9Bwayl3U</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Li, Jialing</creator><creator>Mu, Xiaojiang</creator><creator>Zhou, Jianhua</creator><creator>Zhu, Sijing</creator><creator>Gao, Yangfan</creator><creator>Wang, Xiaoyang</creator><creator>Chen, Jun-Liang</creator><creator>Miao, Lei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0003-4686-5205</orcidid></search><sort><creationdate>20240417</creationdate><title>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</title><author>Li, Jialing ; Mu, Xiaojiang ; Zhou, Jianhua ; Zhu, Sijing ; Gao, Yangfan ; Wang, Xiaoyang ; Chen, Jun-Liang ; Miao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-6d0293b6bc4834e0ba6521351e91c9543f7d8edc278ffd1e9b95096c6dedc98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acrylamides</topic><topic>acrylic acid</topic><topic>adhesion</topic><topic>aluminum foil</topic><topic>catechol</topic><topic>ceramics</topic><topic>composite polymers</topic><topic>cooling</topic><topic>electricity</topic><topic>energy conversion</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>glass</topic><topic>heat transfer</topic><topic>hydrogels</topic><topic>hydrogen</topic><topic>lighting</topic><topic>lithium</topic><topic>longevity</topic><topic>mussels</topic><topic>refrigeration</topic><topic>silicon</topic><topic>sorption</topic><topic>tannins</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jialing</creatorcontrib><creatorcontrib>Mu, Xiaojiang</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Sijing</creatorcontrib><creatorcontrib>Gao, Yangfan</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jialing</au><au>Mu, Xiaojiang</au><au>Zhou, Jianhua</au><au>Zhu, Sijing</au><au>Gao, Yangfan</au><au>Wang, Xiaoyang</au><au>Chen, Jun-Liang</au><au>Miao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>18898</spage><epage>18907</epage><pages>18898-18907</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38588524</pmid><doi>10.1021/acsami.4c00710</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0003-4686-5205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18898-18907 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3035075912 |
source | ACS Publications |
subjects | acrylamides acrylic acid adhesion aluminum foil catechol ceramics composite polymers cooling electricity energy conversion Energy, Environmental, and Catalysis Applications glass heat transfer hydrogels hydrogen lighting lithium longevity mussels refrigeration silicon sorption tannins temperature |
title | Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mussel-Inspired%20Self-Adhesive%20and%20Tough%20Hydrogels%20for%20Effectively%20Cooling%20Solar%20Cells%20and%20Thermoelectric%20Generators&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Jialing&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=18898&rft.epage=18907&rft.pages=18898-18907&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c00710&rft_dat=%3Cproquest_cross%3E3153152396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035075912&rft_id=info:pmid/38588524&rfr_iscdi=true |