Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators

Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18898-18907
Hauptverfasser: Li, Jialing, Mu, Xiaojiang, Zhou, Jianhua, Zhu, Sijing, Gao, Yangfan, Wang, Xiaoyang, Chen, Jun-Liang, Miao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18907
container_issue 15
container_start_page 18898
container_title ACS applied materials & interfaces
container_volume 16
creator Li, Jialing
Mu, Xiaojiang
Zhou, Jianhua
Zhu, Sijing
Gao, Yangfan
Wang, Xiaoyang
Chen, Jun-Liang
Miao, Lei
description Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.
doi_str_mv 10.1021/acsami.4c00710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035075912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153152396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-6d0293b6bc4834e0ba6521351e91c9543f7d8edc278ffd1e9b95096c6dedc98c3</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVpaJyk1x6LjiWwjj7X0jGYxA445JDkvGilkb1Bu3Ilb8H_fZXYyS0EBmYYfu8xzEPoFyVTShi9MjabvpsKS8iMkm9oQrUQlWKSff-YhThFZzm_EFJzRuQPdMqVVEoyMUH5fswZQnU35G2XwOFHCL66dhvI3T_AZnD4KY7rDV7uXYprCBn7mPCN92B3hQh7PI8xdMMaP8ZgEp5DKMybbgOpjxAKmDqLFzBAMruY8gU68SZk-Hns5-j59uZpvqxWD4u7-fWqMpyqXVU7wjRv69YKxQWQ1tSSUS4paGq1FNzPnAJn2Ux578q21ZLo2tauLLWy_Bz9OfhuU_w7Qt41fZdtuc8MEMfccCpLMa7rr1HCJZlJTVlBpwfUpphzAt9sU9ebtG8oaV4zaQ6ZNMdMiuD30Xtse3Af-HsIBbg8AEXYvMQxDeUrn7n9Bwayl3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035075912</pqid></control><display><type>article</type><title>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</title><source>ACS Publications</source><creator>Li, Jialing ; Mu, Xiaojiang ; Zhou, Jianhua ; Zhu, Sijing ; Gao, Yangfan ; Wang, Xiaoyang ; Chen, Jun-Liang ; Miao, Lei</creator><creatorcontrib>Li, Jialing ; Mu, Xiaojiang ; Zhou, Jianhua ; Zhu, Sijing ; Gao, Yangfan ; Wang, Xiaoyang ; Chen, Jun-Liang ; Miao, Lei</creatorcontrib><description>Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c00710</identifier><identifier>PMID: 38588524</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acrylamides ; acrylic acid ; adhesion ; aluminum foil ; catechol ; ceramics ; composite polymers ; cooling ; electricity ; energy conversion ; Energy, Environmental, and Catalysis Applications ; glass ; heat transfer ; hydrogels ; hydrogen ; lighting ; lithium ; longevity ; mussels ; refrigeration ; silicon ; sorption ; tannins ; temperature</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (15), p.18898-18907</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-6d0293b6bc4834e0ba6521351e91c9543f7d8edc278ffd1e9b95096c6dedc98c3</cites><orcidid>0000-0002-2281-2689 ; 0000-0003-4686-5205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c00710$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c00710$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38588524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jialing</creatorcontrib><creatorcontrib>Mu, Xiaojiang</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Sijing</creatorcontrib><creatorcontrib>Gao, Yangfan</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><title>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.</description><subject>acrylamides</subject><subject>acrylic acid</subject><subject>adhesion</subject><subject>aluminum foil</subject><subject>catechol</subject><subject>ceramics</subject><subject>composite polymers</subject><subject>cooling</subject><subject>electricity</subject><subject>energy conversion</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>glass</subject><subject>heat transfer</subject><subject>hydrogels</subject><subject>hydrogen</subject><subject>lighting</subject><subject>lithium</subject><subject>longevity</subject><subject>mussels</subject><subject>refrigeration</subject><subject>silicon</subject><subject>sorption</subject><subject>tannins</subject><subject>temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rGzEQxUVpaJyk1x6LjiWwjj7X0jGYxA445JDkvGilkb1Bu3Ilb8H_fZXYyS0EBmYYfu8xzEPoFyVTShi9MjabvpsKS8iMkm9oQrUQlWKSff-YhThFZzm_EFJzRuQPdMqVVEoyMUH5fswZQnU35G2XwOFHCL66dhvI3T_AZnD4KY7rDV7uXYprCBn7mPCN92B3hQh7PI8xdMMaP8ZgEp5DKMybbgOpjxAKmDqLFzBAMruY8gU68SZk-Hns5-j59uZpvqxWD4u7-fWqMpyqXVU7wjRv69YKxQWQ1tSSUS4paGq1FNzPnAJn2Ux578q21ZLo2tauLLWy_Bz9OfhuU_w7Qt41fZdtuc8MEMfccCpLMa7rr1HCJZlJTVlBpwfUpphzAt9sU9ebtG8oaV4zaQ6ZNMdMiuD30Xtse3Af-HsIBbg8AEXYvMQxDeUrn7n9Bwayl3U</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Li, Jialing</creator><creator>Mu, Xiaojiang</creator><creator>Zhou, Jianhua</creator><creator>Zhu, Sijing</creator><creator>Gao, Yangfan</creator><creator>Wang, Xiaoyang</creator><creator>Chen, Jun-Liang</creator><creator>Miao, Lei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0003-4686-5205</orcidid></search><sort><creationdate>20240417</creationdate><title>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</title><author>Li, Jialing ; Mu, Xiaojiang ; Zhou, Jianhua ; Zhu, Sijing ; Gao, Yangfan ; Wang, Xiaoyang ; Chen, Jun-Liang ; Miao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-6d0293b6bc4834e0ba6521351e91c9543f7d8edc278ffd1e9b95096c6dedc98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acrylamides</topic><topic>acrylic acid</topic><topic>adhesion</topic><topic>aluminum foil</topic><topic>catechol</topic><topic>ceramics</topic><topic>composite polymers</topic><topic>cooling</topic><topic>electricity</topic><topic>energy conversion</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>glass</topic><topic>heat transfer</topic><topic>hydrogels</topic><topic>hydrogen</topic><topic>lighting</topic><topic>lithium</topic><topic>longevity</topic><topic>mussels</topic><topic>refrigeration</topic><topic>silicon</topic><topic>sorption</topic><topic>tannins</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jialing</creatorcontrib><creatorcontrib>Mu, Xiaojiang</creatorcontrib><creatorcontrib>Zhou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Sijing</creatorcontrib><creatorcontrib>Gao, Yangfan</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jialing</au><au>Mu, Xiaojiang</au><au>Zhou, Jianhua</au><au>Zhu, Sijing</au><au>Gao, Yangfan</au><au>Wang, Xiaoyang</au><au>Chen, Jun-Liang</au><au>Miao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>18898</spage><epage>18907</epage><pages>18898-18907</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m–2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38588524</pmid><doi>10.1021/acsami.4c00710</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0003-4686-5205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18898-18907
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3035075912
source ACS Publications
subjects acrylamides
acrylic acid
adhesion
aluminum foil
catechol
ceramics
composite polymers
cooling
electricity
energy conversion
Energy, Environmental, and Catalysis Applications
glass
heat transfer
hydrogels
hydrogen
lighting
lithium
longevity
mussels
refrigeration
silicon
sorption
tannins
temperature
title Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mussel-Inspired%20Self-Adhesive%20and%20Tough%20Hydrogels%20for%20Effectively%20Cooling%20Solar%20Cells%20and%20Thermoelectric%20Generators&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Jialing&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=18898&rft.epage=18907&rft.pages=18898-18907&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c00710&rft_dat=%3Cproquest_cross%3E3153152396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035075912&rft_id=info:pmid/38588524&rfr_iscdi=true