Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid
Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-04, Vol.14 (16), p.11027-11036 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11036 |
---|---|
container_issue | 16 |
container_start_page | 11027 |
container_title | RSC advances |
container_volume | 14 |
creator | Zhao, Xipo Li, Peidong Mo, Fan Zhang, Yuejun Huang, Zepeng Yu, Jiajie Zhou, Ling Bi, Siwen Peng, Shaoxian |
description | Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters
during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m
, and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies. |
doi_str_mv | 10.1039/d4ra00757c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034776527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039271467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-7a38d6dcaea876851f1ba2cd98f5ab9dc39e7f5e133284af261ba4422750f6e83</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaUKSS39AEfSSFjbRlyX7GDb9gkAhtGczlkYbBa3lSvbB5_7xapNtKdVlhPTMwwwvIW84u-JMdtdOZWDMNMa-IKeCKb0RTHcv_7mfkItSHlk9uuFC89fkRLZNq5WSp-TXNk0prlhmzHROy-4BR3T08HYZwc7BUrDBvadDSA53GRwMEekeKh8g0injBLl2DCsNIy1hXqhPuf6HNNLkn0w4P6yxeukurjZFCqOjNsz5KD8nrzzEghfHekZ-fPr4fftlc_ft89ftzd3GSs7mjQHZOu0sILRGtw33fABhXdf6BobOWdmh8Q1yKUWrwNdVB1BKCNMwr7GVZ-Ty2Tvl9HOpK_f7UCzGCCOmpfSSSWWMboSp6Lv_0Me05LFOd6A6YbjSB-rDM2VzKiWj76cc9pDXnrP-kE5_q-5vntLZVvjtUbkMe3R_0T9ZyN9DkYvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039271467</pqid></control><display><type>article</type><title>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Xipo ; Li, Peidong ; Mo, Fan ; Zhang, Yuejun ; Huang, Zepeng ; Yu, Jiajie ; Zhou, Ling ; Bi, Siwen ; Peng, Shaoxian</creator><creatorcontrib>Zhao, Xipo ; Li, Peidong ; Mo, Fan ; Zhang, Yuejun ; Huang, Zepeng ; Yu, Jiajie ; Zhou, Ling ; Bi, Siwen ; Peng, Shaoxian</creatorcontrib><description>Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters
during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m
, and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra00757c</identifier><identifier>PMID: 38586443</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biodegradable materials ; Citric acid ; Food packaging ; Fourier transforms ; Impact strength ; Melt blending ; Polyethylene glycol ; Polylactic acid ; Tensile strength</subject><ispartof>RSC advances, 2024-04, Vol.14 (16), p.11027-11036</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-7a38d6dcaea876851f1ba2cd98f5ab9dc39e7f5e133284af261ba4422750f6e83</cites><orcidid>0000-0001-7875-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38586443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xipo</creatorcontrib><creatorcontrib>Li, Peidong</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Zhang, Yuejun</creatorcontrib><creatorcontrib>Huang, Zepeng</creatorcontrib><creatorcontrib>Yu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Ling</creatorcontrib><creatorcontrib>Bi, Siwen</creatorcontrib><creatorcontrib>Peng, Shaoxian</creatorcontrib><title>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters
during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m
, and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.</description><subject>Biocompatibility</subject><subject>Biodegradable materials</subject><subject>Citric acid</subject><subject>Food packaging</subject><subject>Fourier transforms</subject><subject>Impact strength</subject><subject>Melt blending</subject><subject>Polyethylene glycol</subject><subject>Polylactic acid</subject><subject>Tensile strength</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhkVpaUKSS39AEfSSFjbRlyX7GDb9gkAhtGczlkYbBa3lSvbB5_7xapNtKdVlhPTMwwwvIW84u-JMdtdOZWDMNMa-IKeCKb0RTHcv_7mfkItSHlk9uuFC89fkRLZNq5WSp-TXNk0prlhmzHROy-4BR3T08HYZwc7BUrDBvadDSA53GRwMEekeKh8g0injBLl2DCsNIy1hXqhPuf6HNNLkn0w4P6yxeukurjZFCqOjNsz5KD8nrzzEghfHekZ-fPr4fftlc_ft89ftzd3GSs7mjQHZOu0sILRGtw33fABhXdf6BobOWdmh8Q1yKUWrwNdVB1BKCNMwr7GVZ-Ty2Tvl9HOpK_f7UCzGCCOmpfSSSWWMboSp6Lv_0Me05LFOd6A6YbjSB-rDM2VzKiWj76cc9pDXnrP-kE5_q-5vntLZVvjtUbkMe3R_0T9ZyN9DkYvO</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Zhao, Xipo</creator><creator>Li, Peidong</creator><creator>Mo, Fan</creator><creator>Zhang, Yuejun</creator><creator>Huang, Zepeng</creator><creator>Yu, Jiajie</creator><creator>Zhou, Ling</creator><creator>Bi, Siwen</creator><creator>Peng, Shaoxian</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7875-787X</orcidid></search><sort><creationdate>20240403</creationdate><title>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</title><author>Zhao, Xipo ; Li, Peidong ; Mo, Fan ; Zhang, Yuejun ; Huang, Zepeng ; Yu, Jiajie ; Zhou, Ling ; Bi, Siwen ; Peng, Shaoxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-7a38d6dcaea876851f1ba2cd98f5ab9dc39e7f5e133284af261ba4422750f6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Biodegradable materials</topic><topic>Citric acid</topic><topic>Food packaging</topic><topic>Fourier transforms</topic><topic>Impact strength</topic><topic>Melt blending</topic><topic>Polyethylene glycol</topic><topic>Polylactic acid</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xipo</creatorcontrib><creatorcontrib>Li, Peidong</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Zhang, Yuejun</creatorcontrib><creatorcontrib>Huang, Zepeng</creatorcontrib><creatorcontrib>Yu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Ling</creatorcontrib><creatorcontrib>Bi, Siwen</creatorcontrib><creatorcontrib>Peng, Shaoxian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xipo</au><au>Li, Peidong</au><au>Mo, Fan</au><au>Zhang, Yuejun</au><au>Huang, Zepeng</au><au>Yu, Jiajie</au><au>Zhou, Ling</au><au>Bi, Siwen</au><au>Peng, Shaoxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-04-03</date><risdate>2024</risdate><volume>14</volume><issue>16</issue><spage>11027</spage><epage>11036</epage><pages>11027-11036</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters
during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m
, and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38586443</pmid><doi>10.1039/d4ra00757c</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7875-787X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-04, Vol.14 (16), p.11027-11036 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_3034776527 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biocompatibility Biodegradable materials Citric acid Food packaging Fourier transforms Impact strength Melt blending Polyethylene glycol Polylactic acid Tensile strength |
title | Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copolyester%20toughened%20poly(lactic%20acid)%20biodegradable%20material%20prepared%20by%20in%20situ%20formation%20of%20polyethylene%20glycol%20and%20citric%20acid&rft.jtitle=RSC%20advances&rft.au=Zhao,%20Xipo&rft.date=2024-04-03&rft.volume=14&rft.issue=16&rft.spage=11027&rft.epage=11036&rft.pages=11027-11036&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra00757c&rft_dat=%3Cproquest_cross%3E3039271467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039271467&rft_id=info:pmid/38586443&rfr_iscdi=true |