Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid

Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-04, Vol.14 (16), p.11027-11036
Hauptverfasser: Zhao, Xipo, Li, Peidong, Mo, Fan, Zhang, Yuejun, Huang, Zepeng, Yu, Jiajie, Zhou, Ling, Bi, Siwen, Peng, Shaoxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11036
container_issue 16
container_start_page 11027
container_title RSC advances
container_volume 14
creator Zhao, Xipo
Li, Peidong
Mo, Fan
Zhang, Yuejun
Huang, Zepeng
Yu, Jiajie
Zhou, Ling
Bi, Siwen
Peng, Shaoxian
description Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m , and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.
doi_str_mv 10.1039/d4ra00757c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034776527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039271467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-7a38d6dcaea876851f1ba2cd98f5ab9dc39e7f5e133284af261ba4422750f6e83</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaUKSS39AEfSSFjbRlyX7GDb9gkAhtGczlkYbBa3lSvbB5_7xapNtKdVlhPTMwwwvIW84u-JMdtdOZWDMNMa-IKeCKb0RTHcv_7mfkItSHlk9uuFC89fkRLZNq5WSp-TXNk0prlhmzHROy-4BR3T08HYZwc7BUrDBvadDSA53GRwMEekeKh8g0injBLl2DCsNIy1hXqhPuf6HNNLkn0w4P6yxeukurjZFCqOjNsz5KD8nrzzEghfHekZ-fPr4fftlc_ft89ftzd3GSs7mjQHZOu0sILRGtw33fABhXdf6BobOWdmh8Q1yKUWrwNdVB1BKCNMwr7GVZ-Ty2Tvl9HOpK_f7UCzGCCOmpfSSSWWMboSp6Lv_0Me05LFOd6A6YbjSB-rDM2VzKiWj76cc9pDXnrP-kE5_q-5vntLZVvjtUbkMe3R_0T9ZyN9DkYvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039271467</pqid></control><display><type>article</type><title>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Xipo ; Li, Peidong ; Mo, Fan ; Zhang, Yuejun ; Huang, Zepeng ; Yu, Jiajie ; Zhou, Ling ; Bi, Siwen ; Peng, Shaoxian</creator><creatorcontrib>Zhao, Xipo ; Li, Peidong ; Mo, Fan ; Zhang, Yuejun ; Huang, Zepeng ; Yu, Jiajie ; Zhou, Ling ; Bi, Siwen ; Peng, Shaoxian</creatorcontrib><description>Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m , and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra00757c</identifier><identifier>PMID: 38586443</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biodegradable materials ; Citric acid ; Food packaging ; Fourier transforms ; Impact strength ; Melt blending ; Polyethylene glycol ; Polylactic acid ; Tensile strength</subject><ispartof>RSC advances, 2024-04, Vol.14 (16), p.11027-11036</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-7a38d6dcaea876851f1ba2cd98f5ab9dc39e7f5e133284af261ba4422750f6e83</cites><orcidid>0000-0001-7875-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38586443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xipo</creatorcontrib><creatorcontrib>Li, Peidong</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Zhang, Yuejun</creatorcontrib><creatorcontrib>Huang, Zepeng</creatorcontrib><creatorcontrib>Yu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Ling</creatorcontrib><creatorcontrib>Bi, Siwen</creatorcontrib><creatorcontrib>Peng, Shaoxian</creatorcontrib><title>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m , and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.</description><subject>Biocompatibility</subject><subject>Biodegradable materials</subject><subject>Citric acid</subject><subject>Food packaging</subject><subject>Fourier transforms</subject><subject>Impact strength</subject><subject>Melt blending</subject><subject>Polyethylene glycol</subject><subject>Polylactic acid</subject><subject>Tensile strength</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhkVpaUKSS39AEfSSFjbRlyX7GDb9gkAhtGczlkYbBa3lSvbB5_7xapNtKdVlhPTMwwwvIW84u-JMdtdOZWDMNMa-IKeCKb0RTHcv_7mfkItSHlk9uuFC89fkRLZNq5WSp-TXNk0prlhmzHROy-4BR3T08HYZwc7BUrDBvadDSA53GRwMEekeKh8g0injBLl2DCsNIy1hXqhPuf6HNNLkn0w4P6yxeukurjZFCqOjNsz5KD8nrzzEghfHekZ-fPr4fftlc_ft89ftzd3GSs7mjQHZOu0sILRGtw33fABhXdf6BobOWdmh8Q1yKUWrwNdVB1BKCNMwr7GVZ-Ty2Tvl9HOpK_f7UCzGCCOmpfSSSWWMboSp6Lv_0Me05LFOd6A6YbjSB-rDM2VzKiWj76cc9pDXnrP-kE5_q-5vntLZVvjtUbkMe3R_0T9ZyN9DkYvO</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Zhao, Xipo</creator><creator>Li, Peidong</creator><creator>Mo, Fan</creator><creator>Zhang, Yuejun</creator><creator>Huang, Zepeng</creator><creator>Yu, Jiajie</creator><creator>Zhou, Ling</creator><creator>Bi, Siwen</creator><creator>Peng, Shaoxian</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7875-787X</orcidid></search><sort><creationdate>20240403</creationdate><title>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</title><author>Zhao, Xipo ; Li, Peidong ; Mo, Fan ; Zhang, Yuejun ; Huang, Zepeng ; Yu, Jiajie ; Zhou, Ling ; Bi, Siwen ; Peng, Shaoxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-7a38d6dcaea876851f1ba2cd98f5ab9dc39e7f5e133284af261ba4422750f6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Biodegradable materials</topic><topic>Citric acid</topic><topic>Food packaging</topic><topic>Fourier transforms</topic><topic>Impact strength</topic><topic>Melt blending</topic><topic>Polyethylene glycol</topic><topic>Polylactic acid</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xipo</creatorcontrib><creatorcontrib>Li, Peidong</creatorcontrib><creatorcontrib>Mo, Fan</creatorcontrib><creatorcontrib>Zhang, Yuejun</creatorcontrib><creatorcontrib>Huang, Zepeng</creatorcontrib><creatorcontrib>Yu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Ling</creatorcontrib><creatorcontrib>Bi, Siwen</creatorcontrib><creatorcontrib>Peng, Shaoxian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xipo</au><au>Li, Peidong</au><au>Mo, Fan</au><au>Zhang, Yuejun</au><au>Huang, Zepeng</au><au>Yu, Jiajie</au><au>Zhou, Ling</au><au>Bi, Siwen</au><au>Peng, Shaoxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-04-03</date><risdate>2024</risdate><volume>14</volume><issue>16</issue><spage>11027</spage><epage>11036</epage><pages>11027-11036</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Polylactic acid (PLA) is a high-modulus, high-strength bio-based thermoplastic polyester with good biodegradability, which is currently a promising environmentally friendly material. However, its inherent brittleness has hindered its widespread use. In this study, we reported a simple and non-toxic strategy for toughening PLA, using biodegradable materials such as polyethylene glycol (PEG) and citric acid (CA) as precursors. Through reactive melt blending with PLA, PEG and CA form PEGCA copolyesters during blending. At the same time, CA can react with PLA and PEG, forming a copolyester structure at the interface of the two phases, improving the interfacial compatibility between PEG and PEGCA with PLA. Fourier transform infrared spectroscopy confirms this. Experimental results show that when the content of PEG/CA reaches 15% (PLA/PEG/CA-15%) in the blends, the impact strength of the blend was 4.47 kJ m , and the maximum elongation at break was as high as 360.1%, which were about 2 and 44 times higher than those of pure PLA, respectively. Moreover, the tensile strength was still maintained at the level of 70%. This work can expand the application of PLA in food packaging and medical supplies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38586443</pmid><doi>10.1039/d4ra00757c</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7875-787X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-04, Vol.14 (16), p.11027-11036
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_3034776527
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biocompatibility
Biodegradable materials
Citric acid
Food packaging
Fourier transforms
Impact strength
Melt blending
Polyethylene glycol
Polylactic acid
Tensile strength
title Copolyester toughened poly(lactic acid) biodegradable material prepared by in situ formation of polyethylene glycol and citric acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copolyester%20toughened%20poly(lactic%20acid)%20biodegradable%20material%20prepared%20by%20in%20situ%20formation%20of%20polyethylene%20glycol%20and%20citric%20acid&rft.jtitle=RSC%20advances&rft.au=Zhao,%20Xipo&rft.date=2024-04-03&rft.volume=14&rft.issue=16&rft.spage=11027&rft.epage=11036&rft.pages=11027-11036&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra00757c&rft_dat=%3Cproquest_cross%3E3039271467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039271467&rft_id=info:pmid/38586443&rfr_iscdi=true