Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming
Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-04, Vol.24 (15), p.4588-4594 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4594 |
---|---|
container_issue | 15 |
container_start_page | 4588 |
container_title | Nano letters |
container_volume | 24 |
creator | Ye, Zuyang Tai, Youyi Han, Zonghu Liu, Sangmo Etheridge, Michael L. Pasek-Allen, Jacqueline L. Shastry, Chaitanya Liu, Yun Li, Zhiwei Chen, Chen Wang, Zhongxiang Bischof, John C. Nam, Jin Yin, Yadong |
description | Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation. |
doi_str_mv | 10.1021/acs.nanolett.4c00721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034776279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034776279</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-efab8bab3532e50afa4c98dfba48540f04fc0f8883627f56a47e9074c43388af3</originalsourceid><addsrcrecordid>eNp9kNFOwjAUhhujEUTfwJhdejM8WzvWXRoCYoKaGL00y1k5xZLRYbvF8PYWAS-96kn6f_9pP8auExgmkCZ3qPzQom1qatuhUAB5mpywfpJxiEdFkZ7-zVL02IX3KwAoeAbnrMdlJnMBoz77mNilsUTO2GX0hEtLrVHRc-hVdedbcj7SjYtmZvlZb6OJ1kYZsm00I2x3iLHRKy5ME08dfXVk1fYX_ka3DteX7Exj7enqcA7Y-3TyNp7F85eHx_H9PMa0yNuYNFaywopnPKUMUKNQhVzoCoXMBGgQWoGWUvJRmutshCKnAnKhBOdSouYDdrvv3bgmvMK35dp4RXWNlprOlxy4yPMAFyEq9lHlGu8d6XLjzBrdtkyg3Iktg9jyKLY8iA3YzWFDV61p8QcdTYYA7AM7fNV0zoYP_9_5A4SOiYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034776279</pqid></control><display><type>article</type><title>Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming</title><source>American Chemical Society Journals</source><creator>Ye, Zuyang ; Tai, Youyi ; Han, Zonghu ; Liu, Sangmo ; Etheridge, Michael L. ; Pasek-Allen, Jacqueline L. ; Shastry, Chaitanya ; Liu, Yun ; Li, Zhiwei ; Chen, Chen ; Wang, Zhongxiang ; Bischof, John C. ; Nam, Jin ; Yin, Yadong</creator><creatorcontrib>Ye, Zuyang ; Tai, Youyi ; Han, Zonghu ; Liu, Sangmo ; Etheridge, Michael L. ; Pasek-Allen, Jacqueline L. ; Shastry, Chaitanya ; Liu, Yun ; Li, Zhiwei ; Chen, Chen ; Wang, Zhongxiang ; Bischof, John C. ; Nam, Jin ; Yin, Yadong</creatorcontrib><description>Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c00721</identifier><identifier>PMID: 38587406</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2024-04, Vol.24 (15), p.4588-4594</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-efab8bab3532e50afa4c98dfba48540f04fc0f8883627f56a47e9074c43388af3</cites><orcidid>0009-0004-4870-0767 ; 0000-0003-0218-3042 ; 0000-0001-5117-8958 ; 0000-0001-6726-7111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c00721$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c00721$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38587406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Zuyang</creatorcontrib><creatorcontrib>Tai, Youyi</creatorcontrib><creatorcontrib>Han, Zonghu</creatorcontrib><creatorcontrib>Liu, Sangmo</creatorcontrib><creatorcontrib>Etheridge, Michael L.</creatorcontrib><creatorcontrib>Pasek-Allen, Jacqueline L.</creatorcontrib><creatorcontrib>Shastry, Chaitanya</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Zhongxiang</creatorcontrib><creatorcontrib>Bischof, John C.</creatorcontrib><creatorcontrib>Nam, Jin</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><title>Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kNFOwjAUhhujEUTfwJhdejM8WzvWXRoCYoKaGL00y1k5xZLRYbvF8PYWAS-96kn6f_9pP8auExgmkCZ3qPzQom1qatuhUAB5mpywfpJxiEdFkZ7-zVL02IX3KwAoeAbnrMdlJnMBoz77mNilsUTO2GX0hEtLrVHRc-hVdedbcj7SjYtmZvlZb6OJ1kYZsm00I2x3iLHRKy5ME08dfXVk1fYX_ka3DteX7Exj7enqcA7Y-3TyNp7F85eHx_H9PMa0yNuYNFaywopnPKUMUKNQhVzoCoXMBGgQWoGWUvJRmutshCKnAnKhBOdSouYDdrvv3bgmvMK35dp4RXWNlprOlxy4yPMAFyEq9lHlGu8d6XLjzBrdtkyg3Iktg9jyKLY8iA3YzWFDV61p8QcdTYYA7AM7fNV0zoYP_9_5A4SOiYg</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Ye, Zuyang</creator><creator>Tai, Youyi</creator><creator>Han, Zonghu</creator><creator>Liu, Sangmo</creator><creator>Etheridge, Michael L.</creator><creator>Pasek-Allen, Jacqueline L.</creator><creator>Shastry, Chaitanya</creator><creator>Liu, Yun</creator><creator>Li, Zhiwei</creator><creator>Chen, Chen</creator><creator>Wang, Zhongxiang</creator><creator>Bischof, John C.</creator><creator>Nam, Jin</creator><creator>Yin, Yadong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-4870-0767</orcidid><orcidid>https://orcid.org/0000-0003-0218-3042</orcidid><orcidid>https://orcid.org/0000-0001-5117-8958</orcidid><orcidid>https://orcid.org/0000-0001-6726-7111</orcidid></search><sort><creationdate>20240417</creationdate><title>Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming</title><author>Ye, Zuyang ; Tai, Youyi ; Han, Zonghu ; Liu, Sangmo ; Etheridge, Michael L. ; Pasek-Allen, Jacqueline L. ; Shastry, Chaitanya ; Liu, Yun ; Li, Zhiwei ; Chen, Chen ; Wang, Zhongxiang ; Bischof, John C. ; Nam, Jin ; Yin, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-efab8bab3532e50afa4c98dfba48540f04fc0f8883627f56a47e9074c43388af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zuyang</creatorcontrib><creatorcontrib>Tai, Youyi</creatorcontrib><creatorcontrib>Han, Zonghu</creatorcontrib><creatorcontrib>Liu, Sangmo</creatorcontrib><creatorcontrib>Etheridge, Michael L.</creatorcontrib><creatorcontrib>Pasek-Allen, Jacqueline L.</creatorcontrib><creatorcontrib>Shastry, Chaitanya</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Zhongxiang</creatorcontrib><creatorcontrib>Bischof, John C.</creatorcontrib><creatorcontrib>Nam, Jin</creatorcontrib><creatorcontrib>Yin, Yadong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zuyang</au><au>Tai, Youyi</au><au>Han, Zonghu</au><au>Liu, Sangmo</au><au>Etheridge, Michael L.</au><au>Pasek-Allen, Jacqueline L.</au><au>Shastry, Chaitanya</au><au>Liu, Yun</au><au>Li, Zhiwei</au><au>Chen, Chen</au><au>Wang, Zhongxiang</au><au>Bischof, John C.</au><au>Nam, Jin</au><au>Yin, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>4588</spage><epage>4594</epage><pages>4588-4594</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38587406</pmid><doi>10.1021/acs.nanolett.4c00721</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0004-4870-0767</orcidid><orcidid>https://orcid.org/0000-0003-0218-3042</orcidid><orcidid>https://orcid.org/0000-0001-5117-8958</orcidid><orcidid>https://orcid.org/0000-0001-6726-7111</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-04, Vol.24 (15), p.4588-4594 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_3034776279 |
source | American Chemical Society Journals |
title | Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Magnetic%20Nanoclusters%20for%20Highly%20Efficient%20Heating%20in%20Radio-Frequency%20Nanowarming&rft.jtitle=Nano%20letters&rft.au=Ye,%20Zuyang&rft.date=2024-04-17&rft.volume=24&rft.issue=15&rft.spage=4588&rft.epage=4594&rft.pages=4588-4594&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c00721&rft_dat=%3Cproquest_cross%3E3034776279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034776279&rft_id=info:pmid/38587406&rfr_iscdi=true |