Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning
Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dy...
Gespeichert in:
Veröffentlicht in: | The American journal of medicine 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | The American journal of medicine |
container_volume | |
creator | Benito-León, Julián Lapeña, José García-Vasco, Lorena Cuevas, Constanza Viloria-Porto, Julie Calvo-Córdoba, Alberto Arrieta-Ortubay, Estíbaliz Ruiz-Ruigómez, María Sánchez-Sánchez, Carmen García-Cena, Cecilia |
description | Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dysfunction. We aimed to examine the utility of eye movement measurements in identifying cognitive impairments in long COVID patients.
We recruited 40 long COVID patients experiencing subjective cognitive complaints and 40 healthy controls and used a certified eye-tracking medical device to record saccades and antisaccades. Machine learning was applied to enhance the analysis of eye movement data.
Patients did not differ from the healthy controls regarding age, sex, and years of education. However, the patients' Montreal Cognitive Assessment total score was significantly lower than healthy controls. Most eye movement parameters were significantly worse in patients: the latencies, gain, and velocity of visually and memory-guided saccades, the number of correct memory saccades, the latencies and duration of reflexive saccades, and the number of errors in the antisaccade test. Machine learning permitted distinguishing between long COVID patients experiencing subjective cognitive complaints and healthy controls.
Our findings suggest impairments in frontal subcortical circuits in long COVID patients experiencing subjective cognitive complaints. Eye-tracking, combined with machine learning, offers a novel, efficient way to assess and monitor long COVID patients' cognitive dysfunctions, suggesting its utility in clinical settings for early detection and personalized treatment strategies. Further research is needed to determine the long-term implications of these findings and the reversibility of cognitive dysfunctions. |
doi_str_mv | 10.1016/j.amjmed.2024.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034774400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002934324002171</els_id><sourcerecordid>3034774400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-71d271ac9d4f4bad3bbcc424b1db4df658eb1f1d295320a2298797dcac9539283</originalsourceid><addsrcrecordid>eNp9UdtuEzEQtRCIhtI_QMiPvGzwdS88IFVpCpFSFYm2r5ZvWxx27WB7I_JDfGe9SvuKNJI1M-ecmfEB4ANGS4xw_Xm3lONutGZJEGFLVAKxV2CBOedVg2vyGiwQQqTqKKNn4F1Ku5KijtdvwRlteUsbjhfg3_rvfgjR-Ue4Co_eZXew8OqY-snr7IKHzsNtmLu3D5sr-ENmZ31OX-D6aOFNONixpPBS-RBHORS6TVB6A69j8FkO1c9J6RCz03KAKxf15HKCm3E_lMqsn-DByVmsuotS_573mOk3Uv9y3sKtldGX4nvwppdDshfP7zm4v17frb5X29tvm9XlttKE1LncbUiDpe4M65mShiqlNSNMYaOY6WveWoX7Auo4JUgS0rVN1xhdGJx2pKXn4NNJdx_Dn8mmLEaXtB0G6W2YkqCIsqZhDKECZSeojiGlaHuxj26U8SgwErNDYidODonZIYFKIFZoH58nTGruvZBeLCmAryeALXcenI0i6fLn2hoXrc7CBPf_CU_Jiqau</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034774400</pqid></control><display><type>article</type><title>Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning</title><source>Elsevier ScienceDirect Journals</source><creator>Benito-León, Julián ; Lapeña, José ; García-Vasco, Lorena ; Cuevas, Constanza ; Viloria-Porto, Julie ; Calvo-Córdoba, Alberto ; Arrieta-Ortubay, Estíbaliz ; Ruiz-Ruigómez, María ; Sánchez-Sánchez, Carmen ; García-Cena, Cecilia</creator><creatorcontrib>Benito-León, Julián ; Lapeña, José ; García-Vasco, Lorena ; Cuevas, Constanza ; Viloria-Porto, Julie ; Calvo-Córdoba, Alberto ; Arrieta-Ortubay, Estíbaliz ; Ruiz-Ruigómez, María ; Sánchez-Sánchez, Carmen ; García-Cena, Cecilia</creatorcontrib><description>Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dysfunction. We aimed to examine the utility of eye movement measurements in identifying cognitive impairments in long COVID patients.
We recruited 40 long COVID patients experiencing subjective cognitive complaints and 40 healthy controls and used a certified eye-tracking medical device to record saccades and antisaccades. Machine learning was applied to enhance the analysis of eye movement data.
Patients did not differ from the healthy controls regarding age, sex, and years of education. However, the patients' Montreal Cognitive Assessment total score was significantly lower than healthy controls. Most eye movement parameters were significantly worse in patients: the latencies, gain, and velocity of visually and memory-guided saccades, the number of correct memory saccades, the latencies and duration of reflexive saccades, and the number of errors in the antisaccade test. Machine learning permitted distinguishing between long COVID patients experiencing subjective cognitive complaints and healthy controls.
Our findings suggest impairments in frontal subcortical circuits in long COVID patients experiencing subjective cognitive complaints. Eye-tracking, combined with machine learning, offers a novel, efficient way to assess and monitor long COVID patients' cognitive dysfunctions, suggesting its utility in clinical settings for early detection and personalized treatment strategies. Further research is needed to determine the long-term implications of these findings and the reversibility of cognitive dysfunctions.</description><identifier>ISSN: 0002-9343</identifier><identifier>EISSN: 1555-7162</identifier><identifier>DOI: 10.1016/j.amjmed.2024.04.004</identifier><identifier>PMID: 38583751</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cognitive dysfunction ; eye movement ; frontal-subcortical circuits ; long COVID ; machine-learning</subject><ispartof>The American journal of medicine, 2024-04</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-71d271ac9d4f4bad3bbcc424b1db4df658eb1f1d295320a2298797dcac9539283</cites><orcidid>0000-0002-1769-4809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002934324002171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38583751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benito-León, Julián</creatorcontrib><creatorcontrib>Lapeña, José</creatorcontrib><creatorcontrib>García-Vasco, Lorena</creatorcontrib><creatorcontrib>Cuevas, Constanza</creatorcontrib><creatorcontrib>Viloria-Porto, Julie</creatorcontrib><creatorcontrib>Calvo-Córdoba, Alberto</creatorcontrib><creatorcontrib>Arrieta-Ortubay, Estíbaliz</creatorcontrib><creatorcontrib>Ruiz-Ruigómez, María</creatorcontrib><creatorcontrib>Sánchez-Sánchez, Carmen</creatorcontrib><creatorcontrib>García-Cena, Cecilia</creatorcontrib><title>Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning</title><title>The American journal of medicine</title><addtitle>Am J Med</addtitle><description>Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dysfunction. We aimed to examine the utility of eye movement measurements in identifying cognitive impairments in long COVID patients.
We recruited 40 long COVID patients experiencing subjective cognitive complaints and 40 healthy controls and used a certified eye-tracking medical device to record saccades and antisaccades. Machine learning was applied to enhance the analysis of eye movement data.
Patients did not differ from the healthy controls regarding age, sex, and years of education. However, the patients' Montreal Cognitive Assessment total score was significantly lower than healthy controls. Most eye movement parameters were significantly worse in patients: the latencies, gain, and velocity of visually and memory-guided saccades, the number of correct memory saccades, the latencies and duration of reflexive saccades, and the number of errors in the antisaccade test. Machine learning permitted distinguishing between long COVID patients experiencing subjective cognitive complaints and healthy controls.
Our findings suggest impairments in frontal subcortical circuits in long COVID patients experiencing subjective cognitive complaints. Eye-tracking, combined with machine learning, offers a novel, efficient way to assess and monitor long COVID patients' cognitive dysfunctions, suggesting its utility in clinical settings for early detection and personalized treatment strategies. Further research is needed to determine the long-term implications of these findings and the reversibility of cognitive dysfunctions.</description><subject>Cognitive dysfunction</subject><subject>eye movement</subject><subject>frontal-subcortical circuits</subject><subject>long COVID</subject><subject>machine-learning</subject><issn>0002-9343</issn><issn>1555-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UdtuEzEQtRCIhtI_QMiPvGzwdS88IFVpCpFSFYm2r5ZvWxx27WB7I_JDfGe9SvuKNJI1M-ecmfEB4ANGS4xw_Xm3lONutGZJEGFLVAKxV2CBOedVg2vyGiwQQqTqKKNn4F1Ku5KijtdvwRlteUsbjhfg3_rvfgjR-Ue4Co_eZXew8OqY-snr7IKHzsNtmLu3D5sr-ENmZ31OX-D6aOFNONixpPBS-RBHORS6TVB6A69j8FkO1c9J6RCz03KAKxf15HKCm3E_lMqsn-DByVmsuotS_573mOk3Uv9y3sKtldGX4nvwppdDshfP7zm4v17frb5X29tvm9XlttKE1LncbUiDpe4M65mShiqlNSNMYaOY6WveWoX7Auo4JUgS0rVN1xhdGJx2pKXn4NNJdx_Dn8mmLEaXtB0G6W2YkqCIsqZhDKECZSeojiGlaHuxj26U8SgwErNDYidODonZIYFKIFZoH58nTGruvZBeLCmAryeALXcenI0i6fLn2hoXrc7CBPf_CU_Jiqau</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Benito-León, Julián</creator><creator>Lapeña, José</creator><creator>García-Vasco, Lorena</creator><creator>Cuevas, Constanza</creator><creator>Viloria-Porto, Julie</creator><creator>Calvo-Córdoba, Alberto</creator><creator>Arrieta-Ortubay, Estíbaliz</creator><creator>Ruiz-Ruigómez, María</creator><creator>Sánchez-Sánchez, Carmen</creator><creator>García-Cena, Cecilia</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1769-4809</orcidid></search><sort><creationdate>20240405</creationdate><title>Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning</title><author>Benito-León, Julián ; Lapeña, José ; García-Vasco, Lorena ; Cuevas, Constanza ; Viloria-Porto, Julie ; Calvo-Córdoba, Alberto ; Arrieta-Ortubay, Estíbaliz ; Ruiz-Ruigómez, María ; Sánchez-Sánchez, Carmen ; García-Cena, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-71d271ac9d4f4bad3bbcc424b1db4df658eb1f1d295320a2298797dcac9539283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cognitive dysfunction</topic><topic>eye movement</topic><topic>frontal-subcortical circuits</topic><topic>long COVID</topic><topic>machine-learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benito-León, Julián</creatorcontrib><creatorcontrib>Lapeña, José</creatorcontrib><creatorcontrib>García-Vasco, Lorena</creatorcontrib><creatorcontrib>Cuevas, Constanza</creatorcontrib><creatorcontrib>Viloria-Porto, Julie</creatorcontrib><creatorcontrib>Calvo-Córdoba, Alberto</creatorcontrib><creatorcontrib>Arrieta-Ortubay, Estíbaliz</creatorcontrib><creatorcontrib>Ruiz-Ruigómez, María</creatorcontrib><creatorcontrib>Sánchez-Sánchez, Carmen</creatorcontrib><creatorcontrib>García-Cena, Cecilia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The American journal of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benito-León, Julián</au><au>Lapeña, José</au><au>García-Vasco, Lorena</au><au>Cuevas, Constanza</au><au>Viloria-Porto, Julie</au><au>Calvo-Córdoba, Alberto</au><au>Arrieta-Ortubay, Estíbaliz</au><au>Ruiz-Ruigómez, María</au><au>Sánchez-Sánchez, Carmen</au><au>García-Cena, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning</atitle><jtitle>The American journal of medicine</jtitle><addtitle>Am J Med</addtitle><date>2024-04-05</date><risdate>2024</risdate><issn>0002-9343</issn><eissn>1555-7162</eissn><abstract>Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dysfunction. We aimed to examine the utility of eye movement measurements in identifying cognitive impairments in long COVID patients.
We recruited 40 long COVID patients experiencing subjective cognitive complaints and 40 healthy controls and used a certified eye-tracking medical device to record saccades and antisaccades. Machine learning was applied to enhance the analysis of eye movement data.
Patients did not differ from the healthy controls regarding age, sex, and years of education. However, the patients' Montreal Cognitive Assessment total score was significantly lower than healthy controls. Most eye movement parameters were significantly worse in patients: the latencies, gain, and velocity of visually and memory-guided saccades, the number of correct memory saccades, the latencies and duration of reflexive saccades, and the number of errors in the antisaccade test. Machine learning permitted distinguishing between long COVID patients experiencing subjective cognitive complaints and healthy controls.
Our findings suggest impairments in frontal subcortical circuits in long COVID patients experiencing subjective cognitive complaints. Eye-tracking, combined with machine learning, offers a novel, efficient way to assess and monitor long COVID patients' cognitive dysfunctions, suggesting its utility in clinical settings for early detection and personalized treatment strategies. Further research is needed to determine the long-term implications of these findings and the reversibility of cognitive dysfunctions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38583751</pmid><doi>10.1016/j.amjmed.2024.04.004</doi><orcidid>https://orcid.org/0000-0002-1769-4809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9343 |
ispartof | The American journal of medicine, 2024-04 |
issn | 0002-9343 1555-7162 |
language | eng |
recordid | cdi_proquest_miscellaneous_3034774400 |
source | Elsevier ScienceDirect Journals |
subjects | Cognitive dysfunction eye movement frontal-subcortical circuits long COVID machine-learning |
title | Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Cognitive%20Dysfunction%20in%20Long%20COVID%20Patients:%20Eye%20Movement%20Abnormalities%20and%20Frontal-Subcortical%20Circuits%20Implications%20via%20Eye-Tracking%20and%20Machine%20Learning&rft.jtitle=The%20American%20journal%20of%20medicine&rft.au=Benito-Le%C3%B3n,%20Juli%C3%A1n&rft.date=2024-04-05&rft.issn=0002-9343&rft.eissn=1555-7162&rft_id=info:doi/10.1016/j.amjmed.2024.04.004&rft_dat=%3Cproquest_cross%3E3034774400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034774400&rft_id=info:pmid/38583751&rft_els_id=S0002934324002171&rfr_iscdi=true |