Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries

As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi‐molecular network strategies to solve existing problems of ionic conductivity, mechanical prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-09, Vol.17 (18), p.e202400479-n/a
Hauptverfasser: Wang, Qingyuan, Liu, Yumeng, Zhang, Zidong, Cai, Peng, Li, Haomiao, Zhou, Min, Wang, Wei, Wang, Kangli, Jiang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e202400479
container_title ChemSusChem
container_volume 17
creator Wang, Qingyuan
Liu, Yumeng
Zhang, Zidong
Cai, Peng
Li, Haomiao
Zhou, Min
Wang, Wei
Wang, Kangli
Jiang, Kai
description As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi‐molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide‘s high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc‐electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group‐rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO₂ coin cell using novel zincophilic group ‐rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles. We employ a high‐concentration activation strategy and a dual‐ion shielding effect to activate traditional PAM materials, leveraging their “intrinsic” zincophilic properties. This gel exhibits dynamic reconstruction of the metal‐electrolyte interface during electrochemical cycling, promoting uniform deposition of (002) crystal planes, which leads to excellent deposition kinetics and a highly durable deposition‐stripping process.
doi_str_mv 10.1002/cssc.202400479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034774149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108544963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3289-c42b2e125601d1cf5c4d18e68fb038be81fdbd14bc6e694817700e6878d491f3</originalsourceid><addsrcrecordid>eNqFkc1uEzEURkcIRH9gyxJZYsMmwR57PJ5lSFtaKRVI6QKxsTye69SVYwfbAQ0rHoEn4OF4EtykBIkNK1u65zu-1ldVLwieEozrNzolPa1xzTBmbfeoOiaCs0nD2cfHhzslR9VJSncYc9xx_rQ6oqIRjNTNcfVzprP9orL1K5RvAV35HK1PVqNP1uuwubXOaptHFAz6MLtGl-MQwwocygEts-rL-BvskteQlfv1_ce5A51jcGMGdDZ6tS6uYoVolAZkQtzlHCDlB7QIflUyC2tg9-Degt6qXAIW0rPqiVEuwfOH87S6uTi_mV9OFu_fXc1ni4mmtegmmtV9DeVDHJOBaNNoNhABXJgeU9GDIGboB8J6zYF3TJC2xbiMWzGwjhh6Wr3eazcxfN5CynJtkwbnlIewTZJiytqWEdYV9NU_6F3YRl-Wk5Rg0TDWcVqo6Z7SMaQUwchNtGsVR0mwvC9O3hcnD8WVwMsH7bZfw3DA_zRVgG4PfLUOxv_o5Hy5nP-V_wbu8ahB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108544963</pqid></control><display><type>article</type><title>Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Qingyuan ; Liu, Yumeng ; Zhang, Zidong ; Cai, Peng ; Li, Haomiao ; Zhou, Min ; Wang, Wei ; Wang, Kangli ; Jiang, Kai</creator><creatorcontrib>Wang, Qingyuan ; Liu, Yumeng ; Zhang, Zidong ; Cai, Peng ; Li, Haomiao ; Zhou, Min ; Wang, Wei ; Wang, Kangli ; Jiang, Kai</creatorcontrib><description>As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi‐molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide‘s high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc‐electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group‐rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO₂ coin cell using novel zincophilic group ‐rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles. We employ a high‐concentration activation strategy and a dual‐ion shielding effect to activate traditional PAM materials, leveraging their “intrinsic” zincophilic properties. This gel exhibits dynamic reconstruction of the metal‐electrolyte interface during electrochemical cycling, promoting uniform deposition of (002) crystal planes, which leads to excellent deposition kinetics and a highly durable deposition‐stripping process.</description><identifier>ISSN: 1864-5631</identifier><identifier>ISSN: 1864-564X</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202400479</identifier><identifier>PMID: 38584125</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Aqueous electrolytes ; aqueous zinc metal batteries ; Deposition ; deposition dynamics ; Electrolytes ; Hydrogels ; Hydrogen evolution reactions ; Interface stability ; Ion currents ; Mechanical properties ; metal-electrolyte interface ; Water activity ; Zinc ; zincophilic group-rich hydrogel</subject><ispartof>ChemSusChem, 2024-09, Vol.17 (18), p.e202400479-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3289-c42b2e125601d1cf5c4d18e68fb038be81fdbd14bc6e694817700e6878d491f3</cites><orcidid>0000-0002-4481-6082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202400479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202400479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38584125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qingyuan</creatorcontrib><creatorcontrib>Liu, Yumeng</creatorcontrib><creatorcontrib>Zhang, Zidong</creatorcontrib><creatorcontrib>Cai, Peng</creatorcontrib><creatorcontrib>Li, Haomiao</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Kangli</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><title>Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi‐molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide‘s high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc‐electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group‐rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO₂ coin cell using novel zincophilic group ‐rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles. We employ a high‐concentration activation strategy and a dual‐ion shielding effect to activate traditional PAM materials, leveraging their “intrinsic” zincophilic properties. This gel exhibits dynamic reconstruction of the metal‐electrolyte interface during electrochemical cycling, promoting uniform deposition of (002) crystal planes, which leads to excellent deposition kinetics and a highly durable deposition‐stripping process.</description><subject>Acrylamide</subject><subject>Aqueous electrolytes</subject><subject>aqueous zinc metal batteries</subject><subject>Deposition</subject><subject>deposition dynamics</subject><subject>Electrolytes</subject><subject>Hydrogels</subject><subject>Hydrogen evolution reactions</subject><subject>Interface stability</subject><subject>Ion currents</subject><subject>Mechanical properties</subject><subject>metal-electrolyte interface</subject><subject>Water activity</subject><subject>Zinc</subject><subject>zincophilic group-rich hydrogel</subject><issn>1864-5631</issn><issn>1864-564X</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEURkcIRH9gyxJZYsMmwR57PJ5lSFtaKRVI6QKxsTye69SVYwfbAQ0rHoEn4OF4EtykBIkNK1u65zu-1ldVLwieEozrNzolPa1xzTBmbfeoOiaCs0nD2cfHhzslR9VJSncYc9xx_rQ6oqIRjNTNcfVzprP9orL1K5RvAV35HK1PVqNP1uuwubXOaptHFAz6MLtGl-MQwwocygEts-rL-BvskteQlfv1_ce5A51jcGMGdDZ6tS6uYoVolAZkQtzlHCDlB7QIflUyC2tg9-Degt6qXAIW0rPqiVEuwfOH87S6uTi_mV9OFu_fXc1ni4mmtegmmtV9DeVDHJOBaNNoNhABXJgeU9GDIGboB8J6zYF3TJC2xbiMWzGwjhh6Wr3eazcxfN5CynJtkwbnlIewTZJiytqWEdYV9NU_6F3YRl-Wk5Rg0TDWcVqo6Z7SMaQUwchNtGsVR0mwvC9O3hcnD8WVwMsH7bZfw3DA_zRVgG4PfLUOxv_o5Hy5nP-V_wbu8ahB</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Wang, Qingyuan</creator><creator>Liu, Yumeng</creator><creator>Zhang, Zidong</creator><creator>Cai, Peng</creator><creator>Li, Haomiao</creator><creator>Zhou, Min</creator><creator>Wang, Wei</creator><creator>Wang, Kangli</creator><creator>Jiang, Kai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4481-6082</orcidid></search><sort><creationdate>20240923</creationdate><title>Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries</title><author>Wang, Qingyuan ; Liu, Yumeng ; Zhang, Zidong ; Cai, Peng ; Li, Haomiao ; Zhou, Min ; Wang, Wei ; Wang, Kangli ; Jiang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3289-c42b2e125601d1cf5c4d18e68fb038be81fdbd14bc6e694817700e6878d491f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Aqueous electrolytes</topic><topic>aqueous zinc metal batteries</topic><topic>Deposition</topic><topic>deposition dynamics</topic><topic>Electrolytes</topic><topic>Hydrogels</topic><topic>Hydrogen evolution reactions</topic><topic>Interface stability</topic><topic>Ion currents</topic><topic>Mechanical properties</topic><topic>metal-electrolyte interface</topic><topic>Water activity</topic><topic>Zinc</topic><topic>zincophilic group-rich hydrogel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingyuan</creatorcontrib><creatorcontrib>Liu, Yumeng</creatorcontrib><creatorcontrib>Zhang, Zidong</creatorcontrib><creatorcontrib>Cai, Peng</creatorcontrib><creatorcontrib>Li, Haomiao</creatorcontrib><creatorcontrib>Zhou, Min</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Kangli</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingyuan</au><au>Liu, Yumeng</au><au>Zhang, Zidong</au><au>Cai, Peng</au><au>Li, Haomiao</au><au>Zhou, Min</au><au>Wang, Wei</au><au>Wang, Kangli</au><au>Jiang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>17</volume><issue>18</issue><spage>e202400479</spage><epage>n/a</epage><pages>e202400479-n/a</pages><issn>1864-5631</issn><issn>1864-564X</issn><eissn>1864-564X</eissn><abstract>As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi‐molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide‘s high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc‐electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group‐rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO₂ coin cell using novel zincophilic group ‐rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles. We employ a high‐concentration activation strategy and a dual‐ion shielding effect to activate traditional PAM materials, leveraging their “intrinsic” zincophilic properties. This gel exhibits dynamic reconstruction of the metal‐electrolyte interface during electrochemical cycling, promoting uniform deposition of (002) crystal planes, which leads to excellent deposition kinetics and a highly durable deposition‐stripping process.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38584125</pmid><doi>10.1002/cssc.202400479</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4481-6082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2024-09, Vol.17 (18), p.e202400479-n/a
issn 1864-5631
1864-564X
1864-564X
language eng
recordid cdi_proquest_miscellaneous_3034774149
source Wiley Online Library Journals Frontfile Complete
subjects Acrylamide
Aqueous electrolytes
aqueous zinc metal batteries
Deposition
deposition dynamics
Electrolytes
Hydrogels
Hydrogen evolution reactions
Interface stability
Ion currents
Mechanical properties
metal-electrolyte interface
Water activity
Zinc
zincophilic group-rich hydrogel
title Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal‐Electrolyte Dynamic Interface for Stable and Long‐Life Zinc Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20the%20Intrinsic%20Zincophilicity%20of%20PAM%20Hydrogel%20to%20Stabilize%20the%20Metal%E2%80%90Electrolyte%20Dynamic%20Interface%20for%20Stable%20and%20Long%E2%80%90Life%20Zinc%20Metal%20Batteries&rft.jtitle=ChemSusChem&rft.au=Wang,%20Qingyuan&rft.date=2024-09-23&rft.volume=17&rft.issue=18&rft.spage=e202400479&rft.epage=n/a&rft.pages=e202400479-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202400479&rft_dat=%3Cproquest_cross%3E3108544963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108544963&rft_id=info:pmid/38584125&rfr_iscdi=true