Amplifying Photon Upconversion in Alloyed Nanoparticles for a Near-Infrared Photodetector
Photon upconverison has attracted a substantial amount of interest in diverse fields due to its characteristic anti-Stokes emissions. However, obtaining intense emission under low-power laser irradiation has remained a challenge. Here we report a mechanistic design of activator–sensitizer alloyed na...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-04, Vol.24 (15), p.4580-4587 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photon upconverison has attracted a substantial amount of interest in diverse fields due to its characteristic anti-Stokes emissions. However, obtaining intense emission under low-power laser irradiation has remained a challenge. Here we report a mechanistic design of activator–sensitizer alloyed nanoparticles to achieve bright upconversion under weak infrared irradiation. This design allows a nearest sensitizer–activator separation to facilitate efficient energy transfer that results in remarkably enhanced upconversion (>2 orders of magnitude) under 0.26 W cm–2 irradiation compared to that of the Er sublattice, and the upconversion quantum yield also shows a 20-fold increase. Interestingly, the alloyed nanoparticles exhibit a gradual change in emission color with an increase in Yb3+ content, and moreover, their emission colors can be dynamically controlled by simply modulating the excitation laser power and pulse widths. Such alloyed nanoparticles show great promise for application in a near-infrared photodetector. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.4c00710 |