Photooxidation-Initiated Aqueous-Phase Formation of Organic Peroxides: Delving into Formation Mechanisms
Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. Ho...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-04, Vol.58 (15), p.6564-6574 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6574 |
---|---|
container_issue | 15 |
container_start_page | 6564 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Gautam, Tania Kim, Erica Ng, Lisa Choudhary, Vikram Lima Amorim, Jessica Loebel Roson, Max Zhao, Ran |
description | Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 μM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter. |
doi_str_mv | 10.1021/acs.est.3c01162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034248192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044655191</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-8edac0c768679b62559a6ce7bad0d2380ecfc08965e27df672412f103b10a07d3</originalsourceid><addsrcrecordid>eNp10cFLwzAUBvAgipvTszcpeBGk20vSpKk3UacDZTsoeCtZmm4ZazOTTvS_N3VziOApl9_3JS8PoVMMfQwED6Tyfe2bPlWAMSd7qIsZgZgJhvdRFwDTOKP8tYOOvF8AAKEgDlGHCpYKQqCL5pO5baz9MIVsjK3jUW0aIxtdRNdva23XPp7MpdfR0LrqW0S2jMZuJmujool2bVL7q-hWL99NPYtM3dhf-EmreaC-8sfooJRLr0-2Zw-9DO-ebx7ix_H96Ob6MZYUsyYWupAKVMoFT7MpJ4xlkiudTmUBBaECtCoViIwzTdKi5ClJMCkx0CkGCWlBe-hi07tyNkzgm7wyXunlUtbtODkFmpBE4IwEev6HLuza1eF1QSUJZwxnOKjBRilnvXe6zFfOVNJ95hjydgl5WELeprdLCImzbe96Wuli539-PYDLDWiTuzv_q_sC66-Svg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044655191</pqid></control><display><type>article</type><title>Photooxidation-Initiated Aqueous-Phase Formation of Organic Peroxides: Delving into Formation Mechanisms</title><source>ACS Publications</source><creator>Gautam, Tania ; Kim, Erica ; Ng, Lisa ; Choudhary, Vikram ; Lima Amorim, Jessica ; Loebel Roson, Max ; Zhao, Ran</creator><creatorcontrib>Gautam, Tania ; Kim, Erica ; Ng, Lisa ; Choudhary, Vikram ; Lima Amorim, Jessica ; Loebel Roson, Max ; Zhao, Ran</creatorcontrib><description>Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 μM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c01162</identifier><identifier>PMID: 38578220</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Autoxidation ; Energy and Climate ; Hydrogen peroxide ; Organic compounds ; Organic matter ; Organic peroxides ; Oxidants ; Oxidation ; Oxidizing agents ; Particulate matter ; Peroxides ; Photooxidation ; Precursors ; Ultraviolet radiation ; Water chemistry ; Wavelengths</subject><ispartof>Environmental science & technology, 2024-04, Vol.58 (15), p.6564-6574</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 16, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a315t-8edac0c768679b62559a6ce7bad0d2380ecfc08965e27df672412f103b10a07d3</cites><orcidid>0000-0002-3322-1227 ; 0000-0002-9075-3799 ; 0000-0002-1096-7632 ; 0000-0002-0112-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c01162$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c01162$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38578220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautam, Tania</creatorcontrib><creatorcontrib>Kim, Erica</creatorcontrib><creatorcontrib>Ng, Lisa</creatorcontrib><creatorcontrib>Choudhary, Vikram</creatorcontrib><creatorcontrib>Lima Amorim, Jessica</creatorcontrib><creatorcontrib>Loebel Roson, Max</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><title>Photooxidation-Initiated Aqueous-Phase Formation of Organic Peroxides: Delving into Formation Mechanisms</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 μM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.</description><subject>Autoxidation</subject><subject>Energy and Climate</subject><subject>Hydrogen peroxide</subject><subject>Organic compounds</subject><subject>Organic matter</subject><subject>Organic peroxides</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Particulate matter</subject><subject>Peroxides</subject><subject>Photooxidation</subject><subject>Precursors</subject><subject>Ultraviolet radiation</subject><subject>Water chemistry</subject><subject>Wavelengths</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10cFLwzAUBvAgipvTszcpeBGk20vSpKk3UacDZTsoeCtZmm4ZazOTTvS_N3VziOApl9_3JS8PoVMMfQwED6Tyfe2bPlWAMSd7qIsZgZgJhvdRFwDTOKP8tYOOvF8AAKEgDlGHCpYKQqCL5pO5baz9MIVsjK3jUW0aIxtdRNdva23XPp7MpdfR0LrqW0S2jMZuJmujool2bVL7q-hWL99NPYtM3dhf-EmreaC-8sfooJRLr0-2Zw-9DO-ebx7ix_H96Ob6MZYUsyYWupAKVMoFT7MpJ4xlkiudTmUBBaECtCoViIwzTdKi5ClJMCkx0CkGCWlBe-hi07tyNkzgm7wyXunlUtbtODkFmpBE4IwEev6HLuza1eF1QSUJZwxnOKjBRilnvXe6zFfOVNJ95hjydgl5WELeprdLCImzbe96Wuli539-PYDLDWiTuzv_q_sC66-Svg</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Gautam, Tania</creator><creator>Kim, Erica</creator><creator>Ng, Lisa</creator><creator>Choudhary, Vikram</creator><creator>Lima Amorim, Jessica</creator><creator>Loebel Roson, Max</creator><creator>Zhao, Ran</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3322-1227</orcidid><orcidid>https://orcid.org/0000-0002-9075-3799</orcidid><orcidid>https://orcid.org/0000-0002-1096-7632</orcidid><orcidid>https://orcid.org/0000-0002-0112-334X</orcidid></search><sort><creationdate>20240416</creationdate><title>Photooxidation-Initiated Aqueous-Phase Formation of Organic Peroxides: Delving into Formation Mechanisms</title><author>Gautam, Tania ; Kim, Erica ; Ng, Lisa ; Choudhary, Vikram ; Lima Amorim, Jessica ; Loebel Roson, Max ; Zhao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-8edac0c768679b62559a6ce7bad0d2380ecfc08965e27df672412f103b10a07d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoxidation</topic><topic>Energy and Climate</topic><topic>Hydrogen peroxide</topic><topic>Organic compounds</topic><topic>Organic matter</topic><topic>Organic peroxides</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Particulate matter</topic><topic>Peroxides</topic><topic>Photooxidation</topic><topic>Precursors</topic><topic>Ultraviolet radiation</topic><topic>Water chemistry</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautam, Tania</creatorcontrib><creatorcontrib>Kim, Erica</creatorcontrib><creatorcontrib>Ng, Lisa</creatorcontrib><creatorcontrib>Choudhary, Vikram</creatorcontrib><creatorcontrib>Lima Amorim, Jessica</creatorcontrib><creatorcontrib>Loebel Roson, Max</creatorcontrib><creatorcontrib>Zhao, Ran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautam, Tania</au><au>Kim, Erica</au><au>Ng, Lisa</au><au>Choudhary, Vikram</au><au>Lima Amorim, Jessica</au><au>Loebel Roson, Max</au><au>Zhao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photooxidation-Initiated Aqueous-Phase Formation of Organic Peroxides: Delving into Formation Mechanisms</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-04-16</date><risdate>2024</risdate><volume>58</volume><issue>15</issue><spage>6564</spage><epage>6574</epage><pages>6564-6574</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 μM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38578220</pmid><doi>10.1021/acs.est.3c01162</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3322-1227</orcidid><orcidid>https://orcid.org/0000-0002-9075-3799</orcidid><orcidid>https://orcid.org/0000-0002-1096-7632</orcidid><orcidid>https://orcid.org/0000-0002-0112-334X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-04, Vol.58 (15), p.6564-6574 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3034248192 |
source | ACS Publications |
subjects | Autoxidation Energy and Climate Hydrogen peroxide Organic compounds Organic matter Organic peroxides Oxidants Oxidation Oxidizing agents Particulate matter Peroxides Photooxidation Precursors Ultraviolet radiation Water chemistry Wavelengths |
title | Photooxidation-Initiated Aqueous-Phase Formation of Organic Peroxides: Delving into Formation Mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photooxidation-Initiated%20Aqueous-Phase%20Formation%20of%20Organic%20Peroxides:%20Delving%20into%20Formation%20Mechanisms&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Gautam,%20Tania&rft.date=2024-04-16&rft.volume=58&rft.issue=15&rft.spage=6564&rft.epage=6574&rft.pages=6564-6574&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c01162&rft_dat=%3Cproquest_cross%3E3044655191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044655191&rft_id=info:pmid/38578220&rfr_iscdi=true |