Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment
To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged variou...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2024-08, Vol.87 (8), p.1955-1964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1964 |
---|---|
container_issue | 8 |
container_start_page | 1955 |
container_title | Microscopy research and technique |
container_volume | 87 |
creator | Niazi, Fayez Hussain Luddin, Norhayati Alghawazi, Abdulaziz Marzouq Al Sebai, Leen Alqerban, Ali Alqahtani, Yahya M. Barakat, Ali Samran, Abdulaziz Noushad, Mohammed |
description | To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC.
Research Highlights
10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans.
1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond.
The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + |
doi_str_mv | 10.1002/jemt.24569 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034247529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034247529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3169-4a942bd3972c285b3f15d690d433d2ef707a25464d10019bbd2dee871b1faaaf3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEoqVw4QGQJS4IbYq_kqx7W1XlS0VcisQtcuzJ1qvEXmxn0XLiEXhGzjwEk93CgQMnW6Off_PXeIriKaPnjFL-agNjPueyqtW94pRR1ZRYVffne6VKxejnk-JRShtKGauYfFiciGW1ZKKhp8Wv1TCNzk8j-eaiCV5nIF77sNUxOzNAIs4TyOaWaG9JdD4B0fYWktsByYEYHR1Cuu_BZLDEgs_OwwVZeXz58_uPncsxkGS0986vCQzIxeDJ6EwMyYTtfjEXR3ynB2JdytF1U3bBL7Bldp1Gb3R6WKB7HQFI6AkG3UFMCB1iHVzYK4NPbgDSBSyiCPw6Y_CUIKW5wePiQa-HBE_uzrPi0-urm8u35fXHN-8uV9elEaxWpdRK8s4K1XDDl1UnelbZWlErhbAc-oY2mleylhbHz1TXWW4Blg3rWK-17sVZ8eLo3cbwZYKU29ElA8OgPYQptYIKyWVTcYXo83_QTZiix3RINZLXFRc1Ui-P1DyzFKFvt9GNOu5bRtt5B9p5B9rDDiD87E45dSPYv-ifT0eAHYGvOKz9f1Tt-6sPN0fpb5scxTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074265236</pqid></control><display><type>article</type><title>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niazi, Fayez Hussain ; Luddin, Norhayati ; Alghawazi, Abdulaziz Marzouq ; Al Sebai, Leen ; Alqerban, Ali ; Alqahtani, Yahya M. ; Barakat, Ali ; Samran, Abdulaziz ; Noushad, Mohammed</creator><creatorcontrib>Niazi, Fayez Hussain ; Luddin, Norhayati ; Alghawazi, Abdulaziz Marzouq ; Al Sebai, Leen ; Alqerban, Ali ; Alqahtani, Yahya M. ; Barakat, Ali ; Samran, Abdulaziz ; Noushad, Mohammed</creatorcontrib><description>To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC.
Research Highlights
10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans.
1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond.
The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.
Al2O9Zr3 incorporation with etch‐and‐rinse adhesive in various concentrations has the potential to augment multiple properties of the adhesive.</description><identifier>ISSN: 1059-910X</identifier><identifier>ISSN: 1097-0029</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24569</identifier><identifier>PMID: 38581370</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adhesives ; Adhesives - chemistry ; Aluminum ; Aluminum - analysis ; Aluminum - chemistry ; Aluminum - pharmacology ; aluminum zirconate ; Anti-Bacterial Agents - pharmacology ; Antibacterial activity ; Antiinfectives and antibacterials ; Bond strength ; Bonding strength ; degree of conversion ; Dental Bonding ; Dental caries ; Dental Caries - microbiology ; Dental Cements - chemistry ; Dental Cements - pharmacology ; Dentin - chemistry ; Dentin - drug effects ; Dentin - microbiology ; Energy dispersive X ray spectroscopy ; etch and rinse adhesive ; Failure modes ; Fourier transforms ; Humans ; Infrared analysis ; Infrared spectroscopy ; Microorganisms ; Microscopy, Electron, Scanning ; Nanoparticles ; Nanoparticles - chemistry ; S.Mutans ; Scanning electron microscopy ; Spectrometry, X-Ray Emission - methods ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared - methods ; Spectrum analysis ; Streptococcus mutans - drug effects ; Surface Properties ; Survival ; tensile bond strength ; Tensile Strength ; Variance analysis ; Zirconium ; Zirconium - chemistry</subject><ispartof>Microscopy research and technique, 2024-08, Vol.87 (8), p.1955-1964</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3169-4a942bd3972c285b3f15d690d433d2ef707a25464d10019bbd2dee871b1faaaf3</cites><orcidid>0000-0003-1602-9740 ; 0009-0005-2136-8706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.24569$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.24569$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38581370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niazi, Fayez Hussain</creatorcontrib><creatorcontrib>Luddin, Norhayati</creatorcontrib><creatorcontrib>Alghawazi, Abdulaziz Marzouq</creatorcontrib><creatorcontrib>Al Sebai, Leen</creatorcontrib><creatorcontrib>Alqerban, Ali</creatorcontrib><creatorcontrib>Alqahtani, Yahya M.</creatorcontrib><creatorcontrib>Barakat, Ali</creatorcontrib><creatorcontrib>Samran, Abdulaziz</creatorcontrib><creatorcontrib>Noushad, Mohammed</creatorcontrib><title>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC.
Research Highlights
10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans.
1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond.
The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.
Al2O9Zr3 incorporation with etch‐and‐rinse adhesive in various concentrations has the potential to augment multiple properties of the adhesive.</description><subject>Adhesives</subject><subject>Adhesives - chemistry</subject><subject>Aluminum</subject><subject>Aluminum - analysis</subject><subject>Aluminum - chemistry</subject><subject>Aluminum - pharmacology</subject><subject>aluminum zirconate</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial activity</subject><subject>Antiinfectives and antibacterials</subject><subject>Bond strength</subject><subject>Bonding strength</subject><subject>degree of conversion</subject><subject>Dental Bonding</subject><subject>Dental caries</subject><subject>Dental Caries - microbiology</subject><subject>Dental Cements - chemistry</subject><subject>Dental Cements - pharmacology</subject><subject>Dentin - chemistry</subject><subject>Dentin - drug effects</subject><subject>Dentin - microbiology</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>etch and rinse adhesive</subject><subject>Failure modes</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Microorganisms</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>S.Mutans</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry, X-Ray Emission - methods</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Streptococcus mutans - drug effects</subject><subject>Surface Properties</subject><subject>Survival</subject><subject>tensile bond strength</subject><subject>Tensile Strength</subject><subject>Variance analysis</subject><subject>Zirconium</subject><subject>Zirconium - chemistry</subject><issn>1059-910X</issn><issn>1097-0029</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1u1DAQxyMEoqVw4QGQJS4IbYq_kqx7W1XlS0VcisQtcuzJ1qvEXmxn0XLiEXhGzjwEk93CgQMnW6Off_PXeIriKaPnjFL-agNjPueyqtW94pRR1ZRYVffne6VKxejnk-JRShtKGauYfFiciGW1ZKKhp8Wv1TCNzk8j-eaiCV5nIF77sNUxOzNAIs4TyOaWaG9JdD4B0fYWktsByYEYHR1Cuu_BZLDEgs_OwwVZeXz58_uPncsxkGS0986vCQzIxeDJ6EwMyYTtfjEXR3ynB2JdytF1U3bBL7Bldp1Gb3R6WKB7HQFI6AkG3UFMCB1iHVzYK4NPbgDSBSyiCPw6Y_CUIKW5wePiQa-HBE_uzrPi0-urm8u35fXHN-8uV9elEaxWpdRK8s4K1XDDl1UnelbZWlErhbAc-oY2mleylhbHz1TXWW4Blg3rWK-17sVZ8eLo3cbwZYKU29ElA8OgPYQptYIKyWVTcYXo83_QTZiix3RINZLXFRc1Ui-P1DyzFKFvt9GNOu5bRtt5B9p5B9rDDiD87E45dSPYv-ifT0eAHYGvOKz9f1Tt-6sPN0fpb5scxTM</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Niazi, Fayez Hussain</creator><creator>Luddin, Norhayati</creator><creator>Alghawazi, Abdulaziz Marzouq</creator><creator>Al Sebai, Leen</creator><creator>Alqerban, Ali</creator><creator>Alqahtani, Yahya M.</creator><creator>Barakat, Ali</creator><creator>Samran, Abdulaziz</creator><creator>Noushad, Mohammed</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1602-9740</orcidid><orcidid>https://orcid.org/0009-0005-2136-8706</orcidid></search><sort><creationdate>202408</creationdate><title>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</title><author>Niazi, Fayez Hussain ; Luddin, Norhayati ; Alghawazi, Abdulaziz Marzouq ; Al Sebai, Leen ; Alqerban, Ali ; Alqahtani, Yahya M. ; Barakat, Ali ; Samran, Abdulaziz ; Noushad, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3169-4a942bd3972c285b3f15d690d433d2ef707a25464d10019bbd2dee871b1faaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesives</topic><topic>Adhesives - chemistry</topic><topic>Aluminum</topic><topic>Aluminum - analysis</topic><topic>Aluminum - chemistry</topic><topic>Aluminum - pharmacology</topic><topic>aluminum zirconate</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial activity</topic><topic>Antiinfectives and antibacterials</topic><topic>Bond strength</topic><topic>Bonding strength</topic><topic>degree of conversion</topic><topic>Dental Bonding</topic><topic>Dental caries</topic><topic>Dental Caries - microbiology</topic><topic>Dental Cements - chemistry</topic><topic>Dental Cements - pharmacology</topic><topic>Dentin - chemistry</topic><topic>Dentin - drug effects</topic><topic>Dentin - microbiology</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>etch and rinse adhesive</topic><topic>Failure modes</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Microorganisms</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>S.Mutans</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry, X-Ray Emission - methods</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Streptococcus mutans - drug effects</topic><topic>Surface Properties</topic><topic>Survival</topic><topic>tensile bond strength</topic><topic>Tensile Strength</topic><topic>Variance analysis</topic><topic>Zirconium</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niazi, Fayez Hussain</creatorcontrib><creatorcontrib>Luddin, Norhayati</creatorcontrib><creatorcontrib>Alghawazi, Abdulaziz Marzouq</creatorcontrib><creatorcontrib>Al Sebai, Leen</creatorcontrib><creatorcontrib>Alqerban, Ali</creatorcontrib><creatorcontrib>Alqahtani, Yahya M.</creatorcontrib><creatorcontrib>Barakat, Ali</creatorcontrib><creatorcontrib>Samran, Abdulaziz</creatorcontrib><creatorcontrib>Noushad, Mohammed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niazi, Fayez Hussain</au><au>Luddin, Norhayati</au><au>Alghawazi, Abdulaziz Marzouq</au><au>Al Sebai, Leen</au><au>Alqerban, Ali</au><au>Alqahtani, Yahya M.</au><au>Barakat, Ali</au><au>Samran, Abdulaziz</au><au>Noushad, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2024-08</date><risdate>2024</risdate><volume>87</volume><issue>8</issue><spage>1955</spage><epage>1964</epage><pages>1955-1964</pages><issn>1059-910X</issn><issn>1097-0029</issn><eissn>1097-0029</eissn><abstract>To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC.
Research Highlights
10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans.
1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond.
The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.
Al2O9Zr3 incorporation with etch‐and‐rinse adhesive in various concentrations has the potential to augment multiple properties of the adhesive.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38581370</pmid><doi>10.1002/jemt.24569</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1602-9740</orcidid><orcidid>https://orcid.org/0009-0005-2136-8706</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2024-08, Vol.87 (8), p.1955-1964 |
issn | 1059-910X 1097-0029 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_3034247529 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adhesives Adhesives - chemistry Aluminum Aluminum - analysis Aluminum - chemistry Aluminum - pharmacology aluminum zirconate Anti-Bacterial Agents - pharmacology Antibacterial activity Antiinfectives and antibacterials Bond strength Bonding strength degree of conversion Dental Bonding Dental caries Dental Caries - microbiology Dental Cements - chemistry Dental Cements - pharmacology Dentin - chemistry Dentin - drug effects Dentin - microbiology Energy dispersive X ray spectroscopy etch and rinse adhesive Failure modes Fourier transforms Humans Infrared analysis Infrared spectroscopy Microorganisms Microscopy, Electron, Scanning Nanoparticles Nanoparticles - chemistry S.Mutans Scanning electron microscopy Spectrometry, X-Ray Emission - methods Spectroscopy Spectroscopy, Fourier Transform Infrared - methods Spectrum analysis Streptococcus mutans - drug effects Surface Properties Survival tensile bond strength Tensile Strength Variance analysis Zirconium Zirconium - chemistry |
title | Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum%20zirconate%20nanoparticles%20in%20etch%20and%20rinse%20adhesive%20to%20caries%20affected%20dentine:%20An%20in%E2%80%90vitro%20scanning%20electron%20microscopy,%20elemental%20distribution,%20antibacterial,%20degree%20of%20conversion%20and%20micro%E2%80%90tensile%20bond%20strength%20assessment&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Niazi,%20Fayez%20Hussain&rft.date=2024-08&rft.volume=87&rft.issue=8&rft.spage=1955&rft.epage=1964&rft.pages=1955-1964&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24569&rft_dat=%3Cproquest_cross%3E3034247529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074265236&rft_id=info:pmid/38581370&rfr_iscdi=true |