Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment

To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged variou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2024-08, Vol.87 (8), p.1955-1964
Hauptverfasser: Niazi, Fayez Hussain, Luddin, Norhayati, Alghawazi, Abdulaziz Marzouq, Al Sebai, Leen, Alqerban, Ali, Alqahtani, Yahya M., Barakat, Ali, Samran, Abdulaziz, Noushad, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1964
container_issue 8
container_start_page 1955
container_title Microscopy research and technique
container_volume 87
creator Niazi, Fayez Hussain
Luddin, Norhayati
Alghawazi, Abdulaziz Marzouq
Al Sebai, Leen
Alqerban, Ali
Alqahtani, Yahya M.
Barakat, Ali
Samran, Abdulaziz
Noushad, Mohammed
description To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. Research Highlights 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs +
doi_str_mv 10.1002/jemt.24569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034247529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034247529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3169-4a942bd3972c285b3f15d690d433d2ef707a25464d10019bbd2dee871b1faaaf3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEoqVw4QGQJS4IbYq_kqx7W1XlS0VcisQtcuzJ1qvEXmxn0XLiEXhGzjwEk93CgQMnW6Off_PXeIriKaPnjFL-agNjPueyqtW94pRR1ZRYVffne6VKxejnk-JRShtKGauYfFiciGW1ZKKhp8Wv1TCNzk8j-eaiCV5nIF77sNUxOzNAIs4TyOaWaG9JdD4B0fYWktsByYEYHR1Cuu_BZLDEgs_OwwVZeXz58_uPncsxkGS0986vCQzIxeDJ6EwMyYTtfjEXR3ynB2JdytF1U3bBL7Bldp1Gb3R6WKB7HQFI6AkG3UFMCB1iHVzYK4NPbgDSBSyiCPw6Y_CUIKW5wePiQa-HBE_uzrPi0-urm8u35fXHN-8uV9elEaxWpdRK8s4K1XDDl1UnelbZWlErhbAc-oY2mleylhbHz1TXWW4Blg3rWK-17sVZ8eLo3cbwZYKU29ElA8OgPYQptYIKyWVTcYXo83_QTZiix3RINZLXFRc1Ui-P1DyzFKFvt9GNOu5bRtt5B9p5B9rDDiD87E45dSPYv-ifT0eAHYGvOKz9f1Tt-6sPN0fpb5scxTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074265236</pqid></control><display><type>article</type><title>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niazi, Fayez Hussain ; Luddin, Norhayati ; Alghawazi, Abdulaziz Marzouq ; Al Sebai, Leen ; Alqerban, Ali ; Alqahtani, Yahya M. ; Barakat, Ali ; Samran, Abdulaziz ; Noushad, Mohammed</creator><creatorcontrib>Niazi, Fayez Hussain ; Luddin, Norhayati ; Alghawazi, Abdulaziz Marzouq ; Al Sebai, Leen ; Alqerban, Ali ; Alqahtani, Yahya M. ; Barakat, Ali ; Samran, Abdulaziz ; Noushad, Mohammed</creatorcontrib><description>To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. Research Highlights 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive. Al2O9Zr3 incorporation with etch‐and‐rinse adhesive in various concentrations has the potential to augment multiple properties of the adhesive.</description><identifier>ISSN: 1059-910X</identifier><identifier>ISSN: 1097-0029</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24569</identifier><identifier>PMID: 38581370</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adhesives ; Adhesives - chemistry ; Aluminum ; Aluminum - analysis ; Aluminum - chemistry ; Aluminum - pharmacology ; aluminum zirconate ; Anti-Bacterial Agents - pharmacology ; Antibacterial activity ; Antiinfectives and antibacterials ; Bond strength ; Bonding strength ; degree of conversion ; Dental Bonding ; Dental caries ; Dental Caries - microbiology ; Dental Cements - chemistry ; Dental Cements - pharmacology ; Dentin - chemistry ; Dentin - drug effects ; Dentin - microbiology ; Energy dispersive X ray spectroscopy ; etch and rinse adhesive ; Failure modes ; Fourier transforms ; Humans ; Infrared analysis ; Infrared spectroscopy ; Microorganisms ; Microscopy, Electron, Scanning ; Nanoparticles ; Nanoparticles - chemistry ; S.Mutans ; Scanning electron microscopy ; Spectrometry, X-Ray Emission - methods ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared - methods ; Spectrum analysis ; Streptococcus mutans - drug effects ; Surface Properties ; Survival ; tensile bond strength ; Tensile Strength ; Variance analysis ; Zirconium ; Zirconium - chemistry</subject><ispartof>Microscopy research and technique, 2024-08, Vol.87 (8), p.1955-1964</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3169-4a942bd3972c285b3f15d690d433d2ef707a25464d10019bbd2dee871b1faaaf3</cites><orcidid>0000-0003-1602-9740 ; 0009-0005-2136-8706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.24569$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.24569$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38581370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niazi, Fayez Hussain</creatorcontrib><creatorcontrib>Luddin, Norhayati</creatorcontrib><creatorcontrib>Alghawazi, Abdulaziz Marzouq</creatorcontrib><creatorcontrib>Al Sebai, Leen</creatorcontrib><creatorcontrib>Alqerban, Ali</creatorcontrib><creatorcontrib>Alqahtani, Yahya M.</creatorcontrib><creatorcontrib>Barakat, Ali</creatorcontrib><creatorcontrib>Samran, Abdulaziz</creatorcontrib><creatorcontrib>Noushad, Mohammed</creatorcontrib><title>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. Research Highlights 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive. Al2O9Zr3 incorporation with etch‐and‐rinse adhesive in various concentrations has the potential to augment multiple properties of the adhesive.</description><subject>Adhesives</subject><subject>Adhesives - chemistry</subject><subject>Aluminum</subject><subject>Aluminum - analysis</subject><subject>Aluminum - chemistry</subject><subject>Aluminum - pharmacology</subject><subject>aluminum zirconate</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial activity</subject><subject>Antiinfectives and antibacterials</subject><subject>Bond strength</subject><subject>Bonding strength</subject><subject>degree of conversion</subject><subject>Dental Bonding</subject><subject>Dental caries</subject><subject>Dental Caries - microbiology</subject><subject>Dental Cements - chemistry</subject><subject>Dental Cements - pharmacology</subject><subject>Dentin - chemistry</subject><subject>Dentin - drug effects</subject><subject>Dentin - microbiology</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>etch and rinse adhesive</subject><subject>Failure modes</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Microorganisms</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>S.Mutans</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry, X-Ray Emission - methods</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Streptococcus mutans - drug effects</subject><subject>Surface Properties</subject><subject>Survival</subject><subject>tensile bond strength</subject><subject>Tensile Strength</subject><subject>Variance analysis</subject><subject>Zirconium</subject><subject>Zirconium - chemistry</subject><issn>1059-910X</issn><issn>1097-0029</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1u1DAQxyMEoqVw4QGQJS4IbYq_kqx7W1XlS0VcisQtcuzJ1qvEXmxn0XLiEXhGzjwEk93CgQMnW6Off_PXeIriKaPnjFL-agNjPueyqtW94pRR1ZRYVffne6VKxejnk-JRShtKGauYfFiciGW1ZKKhp8Wv1TCNzk8j-eaiCV5nIF77sNUxOzNAIs4TyOaWaG9JdD4B0fYWktsByYEYHR1Cuu_BZLDEgs_OwwVZeXz58_uPncsxkGS0986vCQzIxeDJ6EwMyYTtfjEXR3ynB2JdytF1U3bBL7Bldp1Gb3R6WKB7HQFI6AkG3UFMCB1iHVzYK4NPbgDSBSyiCPw6Y_CUIKW5wePiQa-HBE_uzrPi0-urm8u35fXHN-8uV9elEaxWpdRK8s4K1XDDl1UnelbZWlErhbAc-oY2mleylhbHz1TXWW4Blg3rWK-17sVZ8eLo3cbwZYKU29ElA8OgPYQptYIKyWVTcYXo83_QTZiix3RINZLXFRc1Ui-P1DyzFKFvt9GNOu5bRtt5B9p5B9rDDiD87E45dSPYv-ifT0eAHYGvOKz9f1Tt-6sPN0fpb5scxTM</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Niazi, Fayez Hussain</creator><creator>Luddin, Norhayati</creator><creator>Alghawazi, Abdulaziz Marzouq</creator><creator>Al Sebai, Leen</creator><creator>Alqerban, Ali</creator><creator>Alqahtani, Yahya M.</creator><creator>Barakat, Ali</creator><creator>Samran, Abdulaziz</creator><creator>Noushad, Mohammed</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1602-9740</orcidid><orcidid>https://orcid.org/0009-0005-2136-8706</orcidid></search><sort><creationdate>202408</creationdate><title>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</title><author>Niazi, Fayez Hussain ; Luddin, Norhayati ; Alghawazi, Abdulaziz Marzouq ; Al Sebai, Leen ; Alqerban, Ali ; Alqahtani, Yahya M. ; Barakat, Ali ; Samran, Abdulaziz ; Noushad, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3169-4a942bd3972c285b3f15d690d433d2ef707a25464d10019bbd2dee871b1faaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesives</topic><topic>Adhesives - chemistry</topic><topic>Aluminum</topic><topic>Aluminum - analysis</topic><topic>Aluminum - chemistry</topic><topic>Aluminum - pharmacology</topic><topic>aluminum zirconate</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial activity</topic><topic>Antiinfectives and antibacterials</topic><topic>Bond strength</topic><topic>Bonding strength</topic><topic>degree of conversion</topic><topic>Dental Bonding</topic><topic>Dental caries</topic><topic>Dental Caries - microbiology</topic><topic>Dental Cements - chemistry</topic><topic>Dental Cements - pharmacology</topic><topic>Dentin - chemistry</topic><topic>Dentin - drug effects</topic><topic>Dentin - microbiology</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>etch and rinse adhesive</topic><topic>Failure modes</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Microorganisms</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>S.Mutans</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry, X-Ray Emission - methods</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Streptococcus mutans - drug effects</topic><topic>Surface Properties</topic><topic>Survival</topic><topic>tensile bond strength</topic><topic>Tensile Strength</topic><topic>Variance analysis</topic><topic>Zirconium</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niazi, Fayez Hussain</creatorcontrib><creatorcontrib>Luddin, Norhayati</creatorcontrib><creatorcontrib>Alghawazi, Abdulaziz Marzouq</creatorcontrib><creatorcontrib>Al Sebai, Leen</creatorcontrib><creatorcontrib>Alqerban, Ali</creatorcontrib><creatorcontrib>Alqahtani, Yahya M.</creatorcontrib><creatorcontrib>Barakat, Ali</creatorcontrib><creatorcontrib>Samran, Abdulaziz</creatorcontrib><creatorcontrib>Noushad, Mohammed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niazi, Fayez Hussain</au><au>Luddin, Norhayati</au><au>Alghawazi, Abdulaziz Marzouq</au><au>Al Sebai, Leen</au><au>Alqerban, Ali</au><au>Alqahtani, Yahya M.</au><au>Barakat, Ali</au><au>Samran, Abdulaziz</au><au>Noushad, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2024-08</date><risdate>2024</risdate><volume>87</volume><issue>8</issue><spage>1955</spage><epage>1964</epage><pages>1955-1964</pages><issn>1059-910X</issn><issn>1097-0029</issn><eissn>1097-0029</eissn><abstract>To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide‐ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy‐dispersive x‐ray spectroscopy (EDX), Fourier‐transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three‐step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one‐way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch‐and‐rinse adhesive exhibited enhanced antibacterial activity and micro‐tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. Research Highlights 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive. Al2O9Zr3 incorporation with etch‐and‐rinse adhesive in various concentrations has the potential to augment multiple properties of the adhesive.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38581370</pmid><doi>10.1002/jemt.24569</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1602-9740</orcidid><orcidid>https://orcid.org/0009-0005-2136-8706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2024-08, Vol.87 (8), p.1955-1964
issn 1059-910X
1097-0029
1097-0029
language eng
recordid cdi_proquest_miscellaneous_3034247529
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adhesives
Adhesives - chemistry
Aluminum
Aluminum - analysis
Aluminum - chemistry
Aluminum - pharmacology
aluminum zirconate
Anti-Bacterial Agents - pharmacology
Antibacterial activity
Antiinfectives and antibacterials
Bond strength
Bonding strength
degree of conversion
Dental Bonding
Dental caries
Dental Caries - microbiology
Dental Cements - chemistry
Dental Cements - pharmacology
Dentin - chemistry
Dentin - drug effects
Dentin - microbiology
Energy dispersive X ray spectroscopy
etch and rinse adhesive
Failure modes
Fourier transforms
Humans
Infrared analysis
Infrared spectroscopy
Microorganisms
Microscopy, Electron, Scanning
Nanoparticles
Nanoparticles - chemistry
S.Mutans
Scanning electron microscopy
Spectrometry, X-Ray Emission - methods
Spectroscopy
Spectroscopy, Fourier Transform Infrared - methods
Spectrum analysis
Streptococcus mutans - drug effects
Surface Properties
Survival
tensile bond strength
Tensile Strength
Variance analysis
Zirconium
Zirconium - chemistry
title Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in‐vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro‐tensile bond strength assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum%20zirconate%20nanoparticles%20in%20etch%20and%20rinse%20adhesive%20to%20caries%20affected%20dentine:%20An%20in%E2%80%90vitro%20scanning%20electron%20microscopy,%20elemental%20distribution,%20antibacterial,%20degree%20of%20conversion%20and%20micro%E2%80%90tensile%20bond%20strength%20assessment&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Niazi,%20Fayez%20Hussain&rft.date=2024-08&rft.volume=87&rft.issue=8&rft.spage=1955&rft.epage=1964&rft.pages=1955-1964&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24569&rft_dat=%3Cproquest_cross%3E3034247529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074265236&rft_id=info:pmid/38581370&rfr_iscdi=true