The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies

Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical proteomics 2024-04, Vol.21 (1), p.28-28, Article 28
Hauptverfasser: Chatanaka, Miyo K, Avery, Lisa M, Pasic, Maria D, Sithravadivel, Shanthan, Rotstein, Dalia, Demos, Catherine, Cohen, Rachel, Gorham, Taron, Wang, Mingyue, Stengelin, Martin, Mathew, Anu, Sigal, George, Wohlstadter, Jacob, Prassas, Ioannis, Diamandis, Eleftherios P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 28
container_title Clinical proteomics
container_volume 21
creator Chatanaka, Miyo K
Avery, Lisa M
Pasic, Maria D
Sithravadivel, Shanthan
Rotstein, Dalia
Demos, Catherine
Cohen, Rachel
Gorham, Taron
Wang, Mingyue
Stengelin, Martin
Mathew, Anu
Sigal, George
Wohlstadter, Jacob
Prassas, Ioannis
Diamandis, Eleftherios P
description Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p 
doi_str_mv 10.1186/s12014-024-09466-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3034243929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A789093413</galeid><sourcerecordid>A789093413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-bcf7d6ac983016ce09803cf0631f1712dcd3d9f3422d14372d67bcc5c081ea7f3</originalsourceid><addsrcrecordid>eNptkVtrFTEUhQdRbK3-AR9kQBBfpuY2meTxUGoVKlWor4ZMstOTmpkckwzivzdnTr1UJITsbL61Ye3VNM8xOsVY8DcZE4RZh0i9knHeyQfNMe57WVtD_3BfM9JxhvlR8yTnW4SIZFI8bo6o6AWSqD9uvlxvoU0QdPFxzlu_a0co3wHmNkNaplbnkuJN8Dq0erbtDEuKc_1MOn2FlNfm5tNHthYfri5avZSo5-LHaD3kp80jp0OGZ3fvSfP57fn12bvu8uri_dnmsjOMsNKNxg2WayMFRZgbQFIgahziFDs8YGKNpVY6ygixmNGBWD6MxvQGCQx6cPSkeX2Yu0vx2wK5qMlnAyHoGeKSFUVVy6gksqIv_0Fv45Kqp5UaBBc9Y3-oGx1A-dnFkrTZD1WbQUgkKcO0Uqf_oeqxMHkTZ3C-9u8JXv0l2IIOZZtjWNbt3wfJATQp5pzAqV3ydek_FEZqn746pK9q-mpNX-2tvbiztowT2N-SX3HTn_hvp4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037868544</pqid></control><display><type>article</type><title>The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Chatanaka, Miyo K ; Avery, Lisa M ; Pasic, Maria D ; Sithravadivel, Shanthan ; Rotstein, Dalia ; Demos, Catherine ; Cohen, Rachel ; Gorham, Taron ; Wang, Mingyue ; Stengelin, Martin ; Mathew, Anu ; Sigal, George ; Wohlstadter, Jacob ; Prassas, Ioannis ; Diamandis, Eleftherios P</creator><creatorcontrib>Chatanaka, Miyo K ; Avery, Lisa M ; Pasic, Maria D ; Sithravadivel, Shanthan ; Rotstein, Dalia ; Demos, Catherine ; Cohen, Rachel ; Gorham, Taron ; Wang, Mingyue ; Stengelin, Martin ; Mathew, Anu ; Sigal, George ; Wohlstadter, Jacob ; Prassas, Ioannis ; Diamandis, Eleftherios P</creatorcontrib><description>Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p &lt; 0.001). A logistic regression model to classify serostatus was able to separate αAQP4 seropositivity using GFAP + tau, and αMOG seropositivity using tau. The areas under the ROC curves (AUCs) were 0.77 and 0.72, respectively. Finally, a combined seropositivity versus negative status logistic regression model was generated, with AUC = 0.80. The 3 markers can univariately and multivariately classify with moderate accuracy the samples with seropositivity and seronegativity for αAQP4 and αMOG.</description><identifier>ISSN: 1542-6416</identifier><identifier>EISSN: 1559-0275</identifier><identifier>DOI: 10.1186/s12014-024-09466-9</identifier><identifier>PMID: 38580905</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Aquaporin 4 ; Aquaporins ; Autoantibodies ; Autoimmunity ; Biomarkers ; Demyelinating diseases ; Demyelination ; Disease ; Glial fibrillary acidic protein ; Glycoproteins ; Immunoassay ; Immunoassays ; Laboratories ; Myelin ; Myelin proteins ; Neuromyelitis ; Neuronal-glial interactions ; Neurons ; Oligodendrocyte-myelin glycoprotein ; Patients ; Proteins ; Regression analysis ; Tau protein</subject><ispartof>Clinical proteomics, 2024-04, Vol.21 (1), p.28-28, Article 28</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c424t-bcf7d6ac983016ce09803cf0631f1712dcd3d9f3422d14372d67bcc5c081ea7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38580905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatanaka, Miyo K</creatorcontrib><creatorcontrib>Avery, Lisa M</creatorcontrib><creatorcontrib>Pasic, Maria D</creatorcontrib><creatorcontrib>Sithravadivel, Shanthan</creatorcontrib><creatorcontrib>Rotstein, Dalia</creatorcontrib><creatorcontrib>Demos, Catherine</creatorcontrib><creatorcontrib>Cohen, Rachel</creatorcontrib><creatorcontrib>Gorham, Taron</creatorcontrib><creatorcontrib>Wang, Mingyue</creatorcontrib><creatorcontrib>Stengelin, Martin</creatorcontrib><creatorcontrib>Mathew, Anu</creatorcontrib><creatorcontrib>Sigal, George</creatorcontrib><creatorcontrib>Wohlstadter, Jacob</creatorcontrib><creatorcontrib>Prassas, Ioannis</creatorcontrib><creatorcontrib>Diamandis, Eleftherios P</creatorcontrib><title>The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies</title><title>Clinical proteomics</title><addtitle>Clin Proteomics</addtitle><description>Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p &lt; 0.001). A logistic regression model to classify serostatus was able to separate αAQP4 seropositivity using GFAP + tau, and αMOG seropositivity using tau. The areas under the ROC curves (AUCs) were 0.77 and 0.72, respectively. Finally, a combined seropositivity versus negative status logistic regression model was generated, with AUC = 0.80. The 3 markers can univariately and multivariately classify with moderate accuracy the samples with seropositivity and seronegativity for αAQP4 and αMOG.</description><subject>Aquaporin 4</subject><subject>Aquaporins</subject><subject>Autoantibodies</subject><subject>Autoimmunity</subject><subject>Biomarkers</subject><subject>Demyelinating diseases</subject><subject>Demyelination</subject><subject>Disease</subject><subject>Glial fibrillary acidic protein</subject><subject>Glycoproteins</subject><subject>Immunoassay</subject><subject>Immunoassays</subject><subject>Laboratories</subject><subject>Myelin</subject><subject>Myelin proteins</subject><subject>Neuromyelitis</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Oligodendrocyte-myelin glycoprotein</subject><subject>Patients</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>Tau protein</subject><issn>1542-6416</issn><issn>1559-0275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkVtrFTEUhQdRbK3-AR9kQBBfpuY2meTxUGoVKlWor4ZMstOTmpkckwzivzdnTr1UJITsbL61Ye3VNM8xOsVY8DcZE4RZh0i9knHeyQfNMe57WVtD_3BfM9JxhvlR8yTnW4SIZFI8bo6o6AWSqD9uvlxvoU0QdPFxzlu_a0co3wHmNkNaplbnkuJN8Dq0erbtDEuKc_1MOn2FlNfm5tNHthYfri5avZSo5-LHaD3kp80jp0OGZ3fvSfP57fn12bvu8uri_dnmsjOMsNKNxg2WayMFRZgbQFIgahziFDs8YGKNpVY6ygixmNGBWD6MxvQGCQx6cPSkeX2Yu0vx2wK5qMlnAyHoGeKSFUVVy6gksqIv_0Fv45Kqp5UaBBc9Y3-oGx1A-dnFkrTZD1WbQUgkKcO0Uqf_oeqxMHkTZ3C-9u8JXv0l2IIOZZtjWNbt3wfJATQp5pzAqV3ydek_FEZqn746pK9q-mpNX-2tvbiztowT2N-SX3HTn_hvp4U</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Chatanaka, Miyo K</creator><creator>Avery, Lisa M</creator><creator>Pasic, Maria D</creator><creator>Sithravadivel, Shanthan</creator><creator>Rotstein, Dalia</creator><creator>Demos, Catherine</creator><creator>Cohen, Rachel</creator><creator>Gorham, Taron</creator><creator>Wang, Mingyue</creator><creator>Stengelin, Martin</creator><creator>Mathew, Anu</creator><creator>Sigal, George</creator><creator>Wohlstadter, Jacob</creator><creator>Prassas, Ioannis</creator><creator>Diamandis, Eleftherios P</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20240405</creationdate><title>The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies</title><author>Chatanaka, Miyo K ; Avery, Lisa M ; Pasic, Maria D ; Sithravadivel, Shanthan ; Rotstein, Dalia ; Demos, Catherine ; Cohen, Rachel ; Gorham, Taron ; Wang, Mingyue ; Stengelin, Martin ; Mathew, Anu ; Sigal, George ; Wohlstadter, Jacob ; Prassas, Ioannis ; Diamandis, Eleftherios P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-bcf7d6ac983016ce09803cf0631f1712dcd3d9f3422d14372d67bcc5c081ea7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquaporin 4</topic><topic>Aquaporins</topic><topic>Autoantibodies</topic><topic>Autoimmunity</topic><topic>Biomarkers</topic><topic>Demyelinating diseases</topic><topic>Demyelination</topic><topic>Disease</topic><topic>Glial fibrillary acidic protein</topic><topic>Glycoproteins</topic><topic>Immunoassay</topic><topic>Immunoassays</topic><topic>Laboratories</topic><topic>Myelin</topic><topic>Myelin proteins</topic><topic>Neuromyelitis</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Oligodendrocyte-myelin glycoprotein</topic><topic>Patients</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>Tau protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatanaka, Miyo K</creatorcontrib><creatorcontrib>Avery, Lisa M</creatorcontrib><creatorcontrib>Pasic, Maria D</creatorcontrib><creatorcontrib>Sithravadivel, Shanthan</creatorcontrib><creatorcontrib>Rotstein, Dalia</creatorcontrib><creatorcontrib>Demos, Catherine</creatorcontrib><creatorcontrib>Cohen, Rachel</creatorcontrib><creatorcontrib>Gorham, Taron</creatorcontrib><creatorcontrib>Wang, Mingyue</creatorcontrib><creatorcontrib>Stengelin, Martin</creatorcontrib><creatorcontrib>Mathew, Anu</creatorcontrib><creatorcontrib>Sigal, George</creatorcontrib><creatorcontrib>Wohlstadter, Jacob</creatorcontrib><creatorcontrib>Prassas, Ioannis</creatorcontrib><creatorcontrib>Diamandis, Eleftherios P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatanaka, Miyo K</au><au>Avery, Lisa M</au><au>Pasic, Maria D</au><au>Sithravadivel, Shanthan</au><au>Rotstein, Dalia</au><au>Demos, Catherine</au><au>Cohen, Rachel</au><au>Gorham, Taron</au><au>Wang, Mingyue</au><au>Stengelin, Martin</au><au>Mathew, Anu</au><au>Sigal, George</au><au>Wohlstadter, Jacob</au><au>Prassas, Ioannis</au><au>Diamandis, Eleftherios P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies</atitle><jtitle>Clinical proteomics</jtitle><addtitle>Clin Proteomics</addtitle><date>2024-04-05</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>28</spage><epage>28</epage><pages>28-28</pages><artnum>28</artnum><issn>1542-6416</issn><eissn>1559-0275</eissn><abstract>Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p &lt; 0.001). A logistic regression model to classify serostatus was able to separate αAQP4 seropositivity using GFAP + tau, and αMOG seropositivity using tau. The areas under the ROC curves (AUCs) were 0.77 and 0.72, respectively. Finally, a combined seropositivity versus negative status logistic regression model was generated, with AUC = 0.80. The 3 markers can univariately and multivariately classify with moderate accuracy the samples with seropositivity and seronegativity for αAQP4 and αMOG.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38580905</pmid><doi>10.1186/s12014-024-09466-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1542-6416
ispartof Clinical proteomics, 2024-04, Vol.21 (1), p.28-28, Article 28
issn 1542-6416
1559-0275
language eng
recordid cdi_proquest_miscellaneous_3034243929
source EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Aquaporin 4
Aquaporins
Autoantibodies
Autoimmunity
Biomarkers
Demyelinating diseases
Demyelination
Disease
Glial fibrillary acidic protein
Glycoproteins
Immunoassay
Immunoassays
Laboratories
Myelin
Myelin proteins
Neuromyelitis
Neuronal-glial interactions
Neurons
Oligodendrocyte-myelin glycoprotein
Patients
Proteins
Regression analysis
Tau protein
title The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20relationship%20between%20serum%20astroglial%20and%20neuronal%20markers%20and%20AQP4%20and%20MOG%20autoantibodies&rft.jtitle=Clinical%20proteomics&rft.au=Chatanaka,%20Miyo%20K&rft.date=2024-04-05&rft.volume=21&rft.issue=1&rft.spage=28&rft.epage=28&rft.pages=28-28&rft.artnum=28&rft.issn=1542-6416&rft.eissn=1559-0275&rft_id=info:doi/10.1186/s12014-024-09466-9&rft_dat=%3Cgale_proqu%3EA789093413%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037868544&rft_id=info:pmid/38580905&rft_galeid=A789093413&rfr_iscdi=true