Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins asso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2024-05, Vol.31 (5), p.772-787.e11
Hauptverfasser: Sun, Zheng, Chen, Zhenni, Yin, Man, Wu, Xianming, Guo, Bo, Cheng, Xiaokang, Quan, Rui, Sun, Yuting, Zhang, Qi, Fan, Yongheng, Jin, Chen, Yin, Yanyun, Hou, Xianglin, Liu, Weiyuan, Shu, Muya, Xue, Xiaoyu, Shi, Ya, Chen, Bing, Xiao, Zhifeng, Dai, Jianwu, Zhao, Yannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787.e11
container_issue 5
container_start_page 772
container_title Cell stem cell
container_volume 31
creator Sun, Zheng
Chen, Zhenni
Yin, Man
Wu, Xianming
Guo, Bo
Cheng, Xiaokang
Quan, Rui
Sun, Yuting
Zhang, Qi
Fan, Yongheng
Jin, Chen
Yin, Yanyun
Hou, Xianglin
Liu, Weiyuan
Shu, Muya
Xue, Xiaoyu
Shi, Ya
Chen, Bing
Xiao, Zhifeng
Dai, Jianwu
Zhao, Yannan
description Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord. [Display omitted] •Early developmental spinal cord contains more beneficial ECM and less inhibitory ECM•DNSCM promotes NPC proliferation, migration, and neuronal differentiation•DNSCM promotes scMN-Organs’ maturation, neurite extension, and neural projection•DNSCM and NPC/scMN-Organs synergistically enhance motor function recovery after SCI Neonatal spinal cord exhibits impressive regenerative capabilities after injury. Sun et al. demonstrate that the neonatal spinal cord extracellular matrix creates a developmental microenvironment for the proliferation, migration, neuronal differentiation, and axon extension of neural progenitor cells, which aids to reconstruct a regenerative niche after spinal cord injury.
doi_str_mv 10.1016/j.stem.2024.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031662687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590924000894</els_id><sourcerecordid>3031662687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8101540a56bd85955037d40e725492b0560e535c29fc7868f2eb9cb8e5af3f593</originalsourceid><addsrcrecordid>eNp9kE2P1SAYhYnROB_6B1wYlm5a35YCJXFjJqMzySRudE0ovL3hpoUK3JuZjb9dbu7owoUrCDnnCech5F0HbQed-Lhvc8G17aEfWmAtgHxBLrtR8kZJKV_Wu2JDwxWoC3KV8x6Ayw7ka3LBRi54N8Al-XVnUsCcfdhRh0dc4rZiKGah7imY1dtM40zz5kN9sjE5io8lGYvLclhMoqspyT9Sv24pHjHThDsMmEzxR6RbLJXla_MfRkw7E6J3-Q15NZsl49vn85r8-HL7_eauefj29f7m80NjGRelGetePoDhYnIjV5wDk24AlD0fVD8BF4Cccdur2cpRjHOPk7LTiNzMbOaKXZMPZ2795s8D5qJXn08jTMB4yJoB64ToxShrtD9HbYo5J5z1lvxq0pPuQJ-8670-edcn7xqYrt5r6f0z_zCt6P5W_oiugU_nANaVR49JZ-sxWHQ-oS3aRf8__m_4xZcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031662687</pqid></control><display><type>article</type><title>Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sun, Zheng ; Chen, Zhenni ; Yin, Man ; Wu, Xianming ; Guo, Bo ; Cheng, Xiaokang ; Quan, Rui ; Sun, Yuting ; Zhang, Qi ; Fan, Yongheng ; Jin, Chen ; Yin, Yanyun ; Hou, Xianglin ; Liu, Weiyuan ; Shu, Muya ; Xue, Xiaoyu ; Shi, Ya ; Chen, Bing ; Xiao, Zhifeng ; Dai, Jianwu ; Zhao, Yannan</creator><creatorcontrib>Sun, Zheng ; Chen, Zhenni ; Yin, Man ; Wu, Xianming ; Guo, Bo ; Cheng, Xiaokang ; Quan, Rui ; Sun, Yuting ; Zhang, Qi ; Fan, Yongheng ; Jin, Chen ; Yin, Yanyun ; Hou, Xianglin ; Liu, Weiyuan ; Shu, Muya ; Xue, Xiaoyu ; Shi, Ya ; Chen, Bing ; Xiao, Zhifeng ; Dai, Jianwu ; Zhao, Yannan</creatorcontrib><description>Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord. [Display omitted] •Early developmental spinal cord contains more beneficial ECM and less inhibitory ECM•DNSCM promotes NPC proliferation, migration, and neuronal differentiation•DNSCM promotes scMN-Organs’ maturation, neurite extension, and neural projection•DNSCM and NPC/scMN-Organs synergistically enhance motor function recovery after SCI Neonatal spinal cord exhibits impressive regenerative capabilities after injury. Sun et al. demonstrate that the neonatal spinal cord extracellular matrix creates a developmental microenvironment for the proliferation, migration, neuronal differentiation, and axon extension of neural progenitor cells, which aids to reconstruct a regenerative niche after spinal cord injury.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2024.03.007</identifier><identifier>PMID: 38565140</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; axon regeneration ; Carrier Proteins ; Cell Differentiation ; Cell Proliferation ; Cytokines ; extracellular matrix ; Extracellular Matrix - metabolism ; Nerve Regeneration - physiology ; neural progenitor cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Organoids - cytology ; Organoids - metabolism ; Rabbits ; Spinal Cord - metabolism ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - therapy ; spinal cord injury ; spinal cord organoid ; Tenascin - metabolism</subject><ispartof>Cell stem cell, 2024-05, Vol.31 (5), p.772-787.e11</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8101540a56bd85955037d40e725492b0560e535c29fc7868f2eb9cb8e5af3f593</citedby><cites>FETCH-LOGICAL-c356t-8101540a56bd85955037d40e725492b0560e535c29fc7868f2eb9cb8e5af3f593</cites><orcidid>0000-0002-3379-9053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2024.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38565140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Chen, Zhenni</creatorcontrib><creatorcontrib>Yin, Man</creatorcontrib><creatorcontrib>Wu, Xianming</creatorcontrib><creatorcontrib>Guo, Bo</creatorcontrib><creatorcontrib>Cheng, Xiaokang</creatorcontrib><creatorcontrib>Quan, Rui</creatorcontrib><creatorcontrib>Sun, Yuting</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Fan, Yongheng</creatorcontrib><creatorcontrib>Jin, Chen</creatorcontrib><creatorcontrib>Yin, Yanyun</creatorcontrib><creatorcontrib>Hou, Xianglin</creatorcontrib><creatorcontrib>Liu, Weiyuan</creatorcontrib><creatorcontrib>Shu, Muya</creatorcontrib><creatorcontrib>Xue, Xiaoyu</creatorcontrib><creatorcontrib>Shi, Ya</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Xiao, Zhifeng</creatorcontrib><creatorcontrib>Dai, Jianwu</creatorcontrib><creatorcontrib>Zhao, Yannan</creatorcontrib><title>Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord. [Display omitted] •Early developmental spinal cord contains more beneficial ECM and less inhibitory ECM•DNSCM promotes NPC proliferation, migration, and neuronal differentiation•DNSCM promotes scMN-Organs’ maturation, neurite extension, and neural projection•DNSCM and NPC/scMN-Organs synergistically enhance motor function recovery after SCI Neonatal spinal cord exhibits impressive regenerative capabilities after injury. Sun et al. demonstrate that the neonatal spinal cord extracellular matrix creates a developmental microenvironment for the proliferation, migration, neuronal differentiation, and axon extension of neural progenitor cells, which aids to reconstruct a regenerative niche after spinal cord injury.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>axon regeneration</subject><subject>Carrier Proteins</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cytokines</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Nerve Regeneration - physiology</subject><subject>neural progenitor cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Organoids - cytology</subject><subject>Organoids - metabolism</subject><subject>Rabbits</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - therapy</subject><subject>spinal cord injury</subject><subject>spinal cord organoid</subject><subject>Tenascin - metabolism</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2P1SAYhYnROB_6B1wYlm5a35YCJXFjJqMzySRudE0ovL3hpoUK3JuZjb9dbu7owoUrCDnnCech5F0HbQed-Lhvc8G17aEfWmAtgHxBLrtR8kZJKV_Wu2JDwxWoC3KV8x6Ayw7ka3LBRi54N8Al-XVnUsCcfdhRh0dc4rZiKGah7imY1dtM40zz5kN9sjE5io8lGYvLclhMoqspyT9Sv24pHjHThDsMmEzxR6RbLJXla_MfRkw7E6J3-Q15NZsl49vn85r8-HL7_eauefj29f7m80NjGRelGetePoDhYnIjV5wDk24AlD0fVD8BF4Cccdur2cpRjHOPk7LTiNzMbOaKXZMPZ2795s8D5qJXn08jTMB4yJoB64ToxShrtD9HbYo5J5z1lvxq0pPuQJ-8670-edcn7xqYrt5r6f0z_zCt6P5W_oiugU_nANaVR49JZ-sxWHQ-oS3aRf8__m_4xZcE</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Sun, Zheng</creator><creator>Chen, Zhenni</creator><creator>Yin, Man</creator><creator>Wu, Xianming</creator><creator>Guo, Bo</creator><creator>Cheng, Xiaokang</creator><creator>Quan, Rui</creator><creator>Sun, Yuting</creator><creator>Zhang, Qi</creator><creator>Fan, Yongheng</creator><creator>Jin, Chen</creator><creator>Yin, Yanyun</creator><creator>Hou, Xianglin</creator><creator>Liu, Weiyuan</creator><creator>Shu, Muya</creator><creator>Xue, Xiaoyu</creator><creator>Shi, Ya</creator><creator>Chen, Bing</creator><creator>Xiao, Zhifeng</creator><creator>Dai, Jianwu</creator><creator>Zhao, Yannan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3379-9053</orcidid></search><sort><creationdate>20240502</creationdate><title>Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids</title><author>Sun, Zheng ; Chen, Zhenni ; Yin, Man ; Wu, Xianming ; Guo, Bo ; Cheng, Xiaokang ; Quan, Rui ; Sun, Yuting ; Zhang, Qi ; Fan, Yongheng ; Jin, Chen ; Yin, Yanyun ; Hou, Xianglin ; Liu, Weiyuan ; Shu, Muya ; Xue, Xiaoyu ; Shi, Ya ; Chen, Bing ; Xiao, Zhifeng ; Dai, Jianwu ; Zhao, Yannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8101540a56bd85955037d40e725492b0560e535c29fc7868f2eb9cb8e5af3f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>axon regeneration</topic><topic>Carrier Proteins</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cytokines</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Nerve Regeneration - physiology</topic><topic>neural progenitor cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Organoids - cytology</topic><topic>Organoids - metabolism</topic><topic>Rabbits</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - therapy</topic><topic>spinal cord injury</topic><topic>spinal cord organoid</topic><topic>Tenascin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Chen, Zhenni</creatorcontrib><creatorcontrib>Yin, Man</creatorcontrib><creatorcontrib>Wu, Xianming</creatorcontrib><creatorcontrib>Guo, Bo</creatorcontrib><creatorcontrib>Cheng, Xiaokang</creatorcontrib><creatorcontrib>Quan, Rui</creatorcontrib><creatorcontrib>Sun, Yuting</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Fan, Yongheng</creatorcontrib><creatorcontrib>Jin, Chen</creatorcontrib><creatorcontrib>Yin, Yanyun</creatorcontrib><creatorcontrib>Hou, Xianglin</creatorcontrib><creatorcontrib>Liu, Weiyuan</creatorcontrib><creatorcontrib>Shu, Muya</creatorcontrib><creatorcontrib>Xue, Xiaoyu</creatorcontrib><creatorcontrib>Shi, Ya</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Xiao, Zhifeng</creatorcontrib><creatorcontrib>Dai, Jianwu</creatorcontrib><creatorcontrib>Zhao, Yannan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zheng</au><au>Chen, Zhenni</au><au>Yin, Man</au><au>Wu, Xianming</au><au>Guo, Bo</au><au>Cheng, Xiaokang</au><au>Quan, Rui</au><au>Sun, Yuting</au><au>Zhang, Qi</au><au>Fan, Yongheng</au><au>Jin, Chen</au><au>Yin, Yanyun</au><au>Hou, Xianglin</au><au>Liu, Weiyuan</au><au>Shu, Muya</au><au>Xue, Xiaoyu</au><au>Shi, Ya</au><au>Chen, Bing</au><au>Xiao, Zhifeng</au><au>Dai, Jianwu</au><au>Zhao, Yannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><spage>772</spage><epage>787.e11</epage><pages>772-787.e11</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord. [Display omitted] •Early developmental spinal cord contains more beneficial ECM and less inhibitory ECM•DNSCM promotes NPC proliferation, migration, and neuronal differentiation•DNSCM promotes scMN-Organs’ maturation, neurite extension, and neural projection•DNSCM and NPC/scMN-Organs synergistically enhance motor function recovery after SCI Neonatal spinal cord exhibits impressive regenerative capabilities after injury. Sun et al. demonstrate that the neonatal spinal cord extracellular matrix creates a developmental microenvironment for the proliferation, migration, neuronal differentiation, and axon extension of neural progenitor cells, which aids to reconstruct a regenerative niche after spinal cord injury.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38565140</pmid><doi>10.1016/j.stem.2024.03.007</doi><orcidid>https://orcid.org/0000-0002-3379-9053</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2024-05, Vol.31 (5), p.772-787.e11
issn 1934-5909
1875-9777
language eng
recordid cdi_proquest_miscellaneous_3031662687
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Animals, Newborn
axon regeneration
Carrier Proteins
Cell Differentiation
Cell Proliferation
Cytokines
extracellular matrix
Extracellular Matrix - metabolism
Nerve Regeneration - physiology
neural progenitor cells
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Organoids - cytology
Organoids - metabolism
Rabbits
Spinal Cord - metabolism
Spinal Cord Injuries - metabolism
Spinal Cord Injuries - pathology
Spinal Cord Injuries - therapy
spinal cord injury
spinal cord organoid
Tenascin - metabolism
title Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20developmental%20dynamics%20of%20spinal%20cord%20extracellular%20matrix%20improves%20regenerative%20potential%20of%20spinal%20cord%20organoids&rft.jtitle=Cell%20stem%20cell&rft.au=Sun,%20Zheng&rft.date=2024-05-02&rft.volume=31&rft.issue=5&rft.spage=772&rft.epage=787.e11&rft.pages=772-787.e11&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2024.03.007&rft_dat=%3Cproquest_cross%3E3031662687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031662687&rft_id=info:pmid/38565140&rft_els_id=S1934590924000894&rfr_iscdi=true