Slimmable transformer with hybrid axial-attention for medical image segmentation
The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-sc...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-05, Vol.173, p.108370, Article 108370 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108370 |
container_title | Computers in biology and medicine |
container_volume | 173 |
creator | Hu, Yiyue Mu, Nan Liu, Lei Zhang, Lei Jiang, Jingfeng Li, Xiaoning |
description | The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.
[Display omitted] |
doi_str_mv | 10.1016/j.compbiomed.2024.108370 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031662116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524004542</els_id><sourcerecordid>3038056060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOl5eQQJu3HQ8adMkXap4A0FBXYc0PdUMbTMmHS9vb8ooghtXgfzfn3PyEUIZzBkwcbKYW98va-d7bOY55Dxdq0LCBpkxJasMyoJvkhkAg4yrvNwhuzEuAIBDAdtkp1Cl4KrkM3L_0Lm-N3WHdAxmiK0PPQb67sYX-vJZB9dQ8-FMl5lxxGF0fqAJoWmus6ajrjfPSCM-9yk0U7xPtlrTRTz4PvfI0-XF4_l1dnt3dXN-epvZgskxEyjrSgBKbFnFQYgKhWyxUaa1JVMomJVCCZFXWLZ1I0DmFVemqlBCy21Z7JHj9bvL4F9XGEfdu2ix68yAfhV1AQVLdcZEQo_-oAu_CkPabqIUlAIEJEqtKRt8jAFbvQzpe-FTM9CTdb3Qv9b1ZF2vrafq4feAVT1lP8UfzQk4WwOYjLw5DDpah4NNFgPaUTfe_T_lCwu-mBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038056060</pqid></control><display><type>article</type><title>Slimmable transformer with hybrid axial-attention for medical image segmentation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hu, Yiyue ; Mu, Nan ; Liu, Lei ; Zhang, Lei ; Jiang, Jingfeng ; Li, Xiaoning</creator><creatorcontrib>Hu, Yiyue ; Mu, Nan ; Liu, Lei ; Zhang, Lei ; Jiang, Jingfeng ; Li, Xiaoning</creatorcontrib><description>The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.
[Display omitted]</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108370</identifier><identifier>PMID: 38564854</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Axial-attention ; Bias ; Coding ; COVID-19 ; COVID-19 - diagnostic imaging ; Datasets ; Diagnosis, Computer-Assisted ; Humans ; Image analysis ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Interpretability ; Medical image segmentation ; Medical imaging ; Methods ; Neural networks ; Optimization algorithms ; Position encoding ; Slimmable transformer ; Software ; Workflow</subject><ispartof>Computers in biology and medicine, 2024-05, Vol.173, p.108370, Article 108370</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</citedby><cites>FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</cites><orcidid>0000-0001-8812-6246 ; 0000-0003-3721-3686 ; 0000-0003-0476-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.108370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38564854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yiyue</creatorcontrib><creatorcontrib>Mu, Nan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Jiang, Jingfeng</creatorcontrib><creatorcontrib>Li, Xiaoning</creatorcontrib><title>Slimmable transformer with hybrid axial-attention for medical image segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.
[Display omitted]</description><subject>Axial-attention</subject><subject>Bias</subject><subject>Coding</subject><subject>COVID-19</subject><subject>COVID-19 - diagnostic imaging</subject><subject>Datasets</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Interpretability</subject><subject>Medical image segmentation</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Position encoding</subject><subject>Slimmable transformer</subject><subject>Software</subject><subject>Workflow</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMoOl5eQQJu3HQ8adMkXap4A0FBXYc0PdUMbTMmHS9vb8ooghtXgfzfn3PyEUIZzBkwcbKYW98va-d7bOY55Dxdq0LCBpkxJasMyoJvkhkAg4yrvNwhuzEuAIBDAdtkp1Cl4KrkM3L_0Lm-N3WHdAxmiK0PPQb67sYX-vJZB9dQ8-FMl5lxxGF0fqAJoWmus6ajrjfPSCM-9yk0U7xPtlrTRTz4PvfI0-XF4_l1dnt3dXN-epvZgskxEyjrSgBKbFnFQYgKhWyxUaa1JVMomJVCCZFXWLZ1I0DmFVemqlBCy21Z7JHj9bvL4F9XGEfdu2ix68yAfhV1AQVLdcZEQo_-oAu_CkPabqIUlAIEJEqtKRt8jAFbvQzpe-FTM9CTdb3Qv9b1ZF2vrafq4feAVT1lP8UfzQk4WwOYjLw5DDpah4NNFgPaUTfe_T_lCwu-mBY</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Hu, Yiyue</creator><creator>Mu, Nan</creator><creator>Liu, Lei</creator><creator>Zhang, Lei</creator><creator>Jiang, Jingfeng</creator><creator>Li, Xiaoning</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8812-6246</orcidid><orcidid>https://orcid.org/0000-0003-3721-3686</orcidid><orcidid>https://orcid.org/0000-0003-0476-7500</orcidid></search><sort><creationdate>202405</creationdate><title>Slimmable transformer with hybrid axial-attention for medical image segmentation</title><author>Hu, Yiyue ; Mu, Nan ; Liu, Lei ; Zhang, Lei ; Jiang, Jingfeng ; Li, Xiaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axial-attention</topic><topic>Bias</topic><topic>Coding</topic><topic>COVID-19</topic><topic>COVID-19 - diagnostic imaging</topic><topic>Datasets</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Interpretability</topic><topic>Medical image segmentation</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Position encoding</topic><topic>Slimmable transformer</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yiyue</creatorcontrib><creatorcontrib>Mu, Nan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Jiang, Jingfeng</creatorcontrib><creatorcontrib>Li, Xiaoning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yiyue</au><au>Mu, Nan</au><au>Liu, Lei</au><au>Zhang, Lei</au><au>Jiang, Jingfeng</au><au>Li, Xiaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slimmable transformer with hybrid axial-attention for medical image segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-05</date><risdate>2024</risdate><volume>173</volume><spage>108370</spage><pages>108370-</pages><artnum>108370</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38564854</pmid><doi>10.1016/j.compbiomed.2024.108370</doi><orcidid>https://orcid.org/0000-0001-8812-6246</orcidid><orcidid>https://orcid.org/0000-0003-3721-3686</orcidid><orcidid>https://orcid.org/0000-0003-0476-7500</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-05, Vol.173, p.108370, Article 108370 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3031662116 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Axial-attention Bias Coding COVID-19 COVID-19 - diagnostic imaging Datasets Diagnosis, Computer-Assisted Humans Image analysis Image processing Image Processing, Computer-Assisted Image segmentation Interpretability Medical image segmentation Medical imaging Methods Neural networks Optimization algorithms Position encoding Slimmable transformer Software Workflow |
title | Slimmable transformer with hybrid axial-attention for medical image segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slimmable%20transformer%20with%20hybrid%20axial-attention%20for%20medical%20image%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Hu,%20Yiyue&rft.date=2024-05&rft.volume=173&rft.spage=108370&rft.pages=108370-&rft.artnum=108370&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108370&rft_dat=%3Cproquest_cross%3E3038056060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038056060&rft_id=info:pmid/38564854&rft_els_id=S0010482524004542&rfr_iscdi=true |