Slimmable transformer with hybrid axial-attention for medical image segmentation

The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-05, Vol.173, p.108370, Article 108370
Hauptverfasser: Hu, Yiyue, Mu, Nan, Liu, Lei, Zhang, Lei, Jiang, Jingfeng, Li, Xiaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108370
container_title Computers in biology and medicine
container_volume 173
creator Hu, Yiyue
Mu, Nan
Liu, Lei
Zhang, Lei
Jiang, Jingfeng
Li, Xiaoning
description The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning. [Display omitted]
doi_str_mv 10.1016/j.compbiomed.2024.108370
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031662116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524004542</els_id><sourcerecordid>3038056060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOl5eQQJu3HQ8adMkXap4A0FBXYc0PdUMbTMmHS9vb8ooghtXgfzfn3PyEUIZzBkwcbKYW98va-d7bOY55Dxdq0LCBpkxJasMyoJvkhkAg4yrvNwhuzEuAIBDAdtkp1Cl4KrkM3L_0Lm-N3WHdAxmiK0PPQb67sYX-vJZB9dQ8-FMl5lxxGF0fqAJoWmus6ajrjfPSCM-9yk0U7xPtlrTRTz4PvfI0-XF4_l1dnt3dXN-epvZgskxEyjrSgBKbFnFQYgKhWyxUaa1JVMomJVCCZFXWLZ1I0DmFVemqlBCy21Z7JHj9bvL4F9XGEfdu2ix68yAfhV1AQVLdcZEQo_-oAu_CkPabqIUlAIEJEqtKRt8jAFbvQzpe-FTM9CTdb3Qv9b1ZF2vrafq4feAVT1lP8UfzQk4WwOYjLw5DDpah4NNFgPaUTfe_T_lCwu-mBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038056060</pqid></control><display><type>article</type><title>Slimmable transformer with hybrid axial-attention for medical image segmentation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hu, Yiyue ; Mu, Nan ; Liu, Lei ; Zhang, Lei ; Jiang, Jingfeng ; Li, Xiaoning</creator><creatorcontrib>Hu, Yiyue ; Mu, Nan ; Liu, Lei ; Zhang, Lei ; Jiang, Jingfeng ; Li, Xiaoning</creatorcontrib><description>The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning. [Display omitted]</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108370</identifier><identifier>PMID: 38564854</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Axial-attention ; Bias ; Coding ; COVID-19 ; COVID-19 - diagnostic imaging ; Datasets ; Diagnosis, Computer-Assisted ; Humans ; Image analysis ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Interpretability ; Medical image segmentation ; Medical imaging ; Methods ; Neural networks ; Optimization algorithms ; Position encoding ; Slimmable transformer ; Software ; Workflow</subject><ispartof>Computers in biology and medicine, 2024-05, Vol.173, p.108370, Article 108370</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</citedby><cites>FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</cites><orcidid>0000-0001-8812-6246 ; 0000-0003-3721-3686 ; 0000-0003-0476-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.108370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38564854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yiyue</creatorcontrib><creatorcontrib>Mu, Nan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Jiang, Jingfeng</creatorcontrib><creatorcontrib>Li, Xiaoning</creatorcontrib><title>Slimmable transformer with hybrid axial-attention for medical image segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning. [Display omitted]</description><subject>Axial-attention</subject><subject>Bias</subject><subject>Coding</subject><subject>COVID-19</subject><subject>COVID-19 - diagnostic imaging</subject><subject>Datasets</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Interpretability</subject><subject>Medical image segmentation</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Position encoding</subject><subject>Slimmable transformer</subject><subject>Software</subject><subject>Workflow</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMoOl5eQQJu3HQ8adMkXap4A0FBXYc0PdUMbTMmHS9vb8ooghtXgfzfn3PyEUIZzBkwcbKYW98va-d7bOY55Dxdq0LCBpkxJasMyoJvkhkAg4yrvNwhuzEuAIBDAdtkp1Cl4KrkM3L_0Lm-N3WHdAxmiK0PPQb67sYX-vJZB9dQ8-FMl5lxxGF0fqAJoWmus6ajrjfPSCM-9yk0U7xPtlrTRTz4PvfI0-XF4_l1dnt3dXN-epvZgskxEyjrSgBKbFnFQYgKhWyxUaa1JVMomJVCCZFXWLZ1I0DmFVemqlBCy21Z7JHj9bvL4F9XGEfdu2ix68yAfhV1AQVLdcZEQo_-oAu_CkPabqIUlAIEJEqtKRt8jAFbvQzpe-FTM9CTdb3Qv9b1ZF2vrafq4feAVT1lP8UfzQk4WwOYjLw5DDpah4NNFgPaUTfe_T_lCwu-mBY</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Hu, Yiyue</creator><creator>Mu, Nan</creator><creator>Liu, Lei</creator><creator>Zhang, Lei</creator><creator>Jiang, Jingfeng</creator><creator>Li, Xiaoning</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8812-6246</orcidid><orcidid>https://orcid.org/0000-0003-3721-3686</orcidid><orcidid>https://orcid.org/0000-0003-0476-7500</orcidid></search><sort><creationdate>202405</creationdate><title>Slimmable transformer with hybrid axial-attention for medical image segmentation</title><author>Hu, Yiyue ; Mu, Nan ; Liu, Lei ; Zhang, Lei ; Jiang, Jingfeng ; Li, Xiaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-6e7b960e7ef1940669e67fed8afc518e61c7686629e5fbd6072948a99e70f4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axial-attention</topic><topic>Bias</topic><topic>Coding</topic><topic>COVID-19</topic><topic>COVID-19 - diagnostic imaging</topic><topic>Datasets</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Interpretability</topic><topic>Medical image segmentation</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Position encoding</topic><topic>Slimmable transformer</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yiyue</creatorcontrib><creatorcontrib>Mu, Nan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Jiang, Jingfeng</creatorcontrib><creatorcontrib>Li, Xiaoning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yiyue</au><au>Mu, Nan</au><au>Liu, Lei</au><au>Zhang, Lei</au><au>Jiang, Jingfeng</au><au>Li, Xiaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slimmable transformer with hybrid axial-attention for medical image segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-05</date><risdate>2024</risdate><volume>173</volume><spage>108370</spage><pages>108370-</pages><artnum>108370</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38564854</pmid><doi>10.1016/j.compbiomed.2024.108370</doi><orcidid>https://orcid.org/0000-0001-8812-6246</orcidid><orcidid>https://orcid.org/0000-0003-3721-3686</orcidid><orcidid>https://orcid.org/0000-0003-0476-7500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-05, Vol.173, p.108370, Article 108370
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3031662116
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Axial-attention
Bias
Coding
COVID-19
COVID-19 - diagnostic imaging
Datasets
Diagnosis, Computer-Assisted
Humans
Image analysis
Image processing
Image Processing, Computer-Assisted
Image segmentation
Interpretability
Medical image segmentation
Medical imaging
Methods
Neural networks
Optimization algorithms
Position encoding
Slimmable transformer
Software
Workflow
title Slimmable transformer with hybrid axial-attention for medical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slimmable%20transformer%20with%20hybrid%20axial-attention%20for%20medical%20image%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Hu,%20Yiyue&rft.date=2024-05&rft.volume=173&rft.spage=108370&rft.pages=108370-&rft.artnum=108370&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108370&rft_dat=%3Cproquest_cross%3E3038056060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038056060&rft_id=info:pmid/38564854&rft_els_id=S0010482524004542&rfr_iscdi=true