HoloCamera: Advanced Volumetric Capture for Cinematic-Quality VR Applications

High-precision virtual environments are increasingly important for various education, simulation, training, performance, and entertainment applications. We present HoloCamera, an innovative volumetric capture instrument to rapidly acquire, process, and create cinematic-quality virtual avatars and sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2024-05, Vol.30 (5), p.1-9
Hauptverfasser: Heagerty, Jonathan, Li, Sida, Lee, Eric, Bhattacharyya, Shuvra, Bista, Sujal, Brawn, Barbara, Feng, Brandon Y., Jabbireddy, Susmija, JaJa, Joseph, Kacorri, Hernisa, Li, David, Yarnell, Derek, Zwicker, Matthias, Varshney, Amitabh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 5
container_start_page 1
container_title IEEE transactions on visualization and computer graphics
container_volume 30
creator Heagerty, Jonathan
Li, Sida
Lee, Eric
Bhattacharyya, Shuvra
Bista, Sujal
Brawn, Barbara
Feng, Brandon Y.
Jabbireddy, Susmija
JaJa, Joseph
Kacorri, Hernisa
Li, David
Yarnell, Derek
Zwicker, Matthias
Varshney, Amitabh
description High-precision virtual environments are increasingly important for various education, simulation, training, performance, and entertainment applications. We present HoloCamera, an innovative volumetric capture instrument to rapidly acquire, process, and create cinematic-quality virtual avatars and scenarios. The HoloCamera consists of a custom-designed free-standing structure with 300 high-resolution RGB cameras mounted with uniform spacing spanning the four sides and the ceiling of a room-sized studio. The light field acquired from these cameras is streamed through a distributed array of GPUs that interleave the processing and transmission of 4K resolution images. The distributed compute infrastructure that powers these RGB cameras consists of 50 Jetson AGX Xavier boards, with each processing unit dedicated to driving and processing imagery from six cameras. A high-speed Gigabit Ethernet network fabric seamlessly interconnects all computing boards. In this systems paper, we provide an in-depth description of the steps involved and lessons learned in constructing such a cutting-edge volumetric capture facility that can be generalized to other such facilities. We delve into the techniques employed to achieve precise frame synchronization and spatial calibration of cameras, careful determination of angled camera mounts, image processing from the camera sensors, and the need for a resilient and robust network infrastructure. To advance the field of volumetric capture, we are releasing a high-fidelity static light-field dataset, which will serve as a benchmark for further research and applications of cinematic-quality volumetric light fields.
doi_str_mv 10.1109/TVCG.2024.3372123
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031661964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10488869</ieee_id><sourcerecordid>3041499585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-b03f69d9e32db7e50a5d86dee59cc6ae1579a3af0b3f45a42c1cf91fc47882be3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdR_Kj-AEEk4MVL6n5n11sJ2goVUWqvYbOZQCTJxt1E6L83pVXE0wzDMy8zD0KXBE8JwfputU7nU4opnzKWUELZATolmpMYCywPxx4nSUwllSfoLIQPjAnnSh-jE6aE5EzIU_S8cLVLTQPe3Eez4su0Fopo7eqhgd5XNkpN1w8eotL5KK1aaExf2fh1MHXVb6L1WzTrurqy49S14RwdlaYOcLGvE_T--LBKF_HyZf6UzpaxZZj2cY5ZKXWhgdEiT0BgIwolCwChrZUGiEi0YabEOSu5MJxaYktNSssTpWgObIJud7mdd58DhD5rqmChrk0LbggZw4xISfT45ATd_EM_3ODb8bqR4oRrLZQYKbKjrHcheCizzleN8ZuM4GzrOtu6zraus73rced6nzzkDRS_Gz9yR-BqB1QA8CeQK6WkZt_DiYKB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041499585</pqid></control><display><type>article</type><title>HoloCamera: Advanced Volumetric Capture for Cinematic-Quality VR Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Heagerty, Jonathan ; Li, Sida ; Lee, Eric ; Bhattacharyya, Shuvra ; Bista, Sujal ; Brawn, Barbara ; Feng, Brandon Y. ; Jabbireddy, Susmija ; JaJa, Joseph ; Kacorri, Hernisa ; Li, David ; Yarnell, Derek ; Zwicker, Matthias ; Varshney, Amitabh</creator><creatorcontrib>Heagerty, Jonathan ; Li, Sida ; Lee, Eric ; Bhattacharyya, Shuvra ; Bista, Sujal ; Brawn, Barbara ; Feng, Brandon Y. ; Jabbireddy, Susmija ; JaJa, Joseph ; Kacorri, Hernisa ; Li, David ; Yarnell, Derek ; Zwicker, Matthias ; Varshney, Amitabh</creatorcontrib><description>High-precision virtual environments are increasingly important for various education, simulation, training, performance, and entertainment applications. We present HoloCamera, an innovative volumetric capture instrument to rapidly acquire, process, and create cinematic-quality virtual avatars and scenarios. The HoloCamera consists of a custom-designed free-standing structure with 300 high-resolution RGB cameras mounted with uniform spacing spanning the four sides and the ceiling of a room-sized studio. The light field acquired from these cameras is streamed through a distributed array of GPUs that interleave the processing and transmission of 4K resolution images. The distributed compute infrastructure that powers these RGB cameras consists of 50 Jetson AGX Xavier boards, with each processing unit dedicated to driving and processing imagery from six cameras. A high-speed Gigabit Ethernet network fabric seamlessly interconnects all computing boards. In this systems paper, we provide an in-depth description of the steps involved and lessons learned in constructing such a cutting-edge volumetric capture facility that can be generalized to other such facilities. We delve into the techniques employed to achieve precise frame synchronization and spatial calibration of cameras, careful determination of angled camera mounts, image processing from the camera sensors, and the need for a resilient and robust network infrastructure. To advance the field of volumetric capture, we are releasing a high-fidelity static light-field dataset, which will serve as a benchmark for further research and applications of cinematic-quality volumetric light fields.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3372123</identifier><identifier>PMID: 38564356</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Avatars ; Cameras ; Ethernet ; Holoportation ; Image processing ; Infrastructure ; Light fields ; Multi-camera Array ; Spatial calibration ; Streaming media ; Synchronism ; Synchronization ; Three-dimensional displays ; Training ; Virtual environments ; Virtual reality ; Volumetric Capture</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-05, Vol.30 (5), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-b03f69d9e32db7e50a5d86dee59cc6ae1579a3af0b3f45a42c1cf91fc47882be3</cites><orcidid>0000-0002-9873-2212 ; 0000-0001-7719-1106 ; 0000-0001-7003-9128 ; 0009-0003-5865-3389 ; 0000-0002-3187-6190 ; 0009-0005-3834-9667 ; 0009-0008-1140-6870 ; 0000-0003-2601-821X ; 0000-0002-8620-5650 ; 0000-0002-2221-3096 ; 0000-0001-8630-5515 ; 0009-0004-6020-8409 ; 0009-0005-9761-0714 ; 0000-0002-7798-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10488869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10488869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38564356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heagerty, Jonathan</creatorcontrib><creatorcontrib>Li, Sida</creatorcontrib><creatorcontrib>Lee, Eric</creatorcontrib><creatorcontrib>Bhattacharyya, Shuvra</creatorcontrib><creatorcontrib>Bista, Sujal</creatorcontrib><creatorcontrib>Brawn, Barbara</creatorcontrib><creatorcontrib>Feng, Brandon Y.</creatorcontrib><creatorcontrib>Jabbireddy, Susmija</creatorcontrib><creatorcontrib>JaJa, Joseph</creatorcontrib><creatorcontrib>Kacorri, Hernisa</creatorcontrib><creatorcontrib>Li, David</creatorcontrib><creatorcontrib>Yarnell, Derek</creatorcontrib><creatorcontrib>Zwicker, Matthias</creatorcontrib><creatorcontrib>Varshney, Amitabh</creatorcontrib><title>HoloCamera: Advanced Volumetric Capture for Cinematic-Quality VR Applications</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>High-precision virtual environments are increasingly important for various education, simulation, training, performance, and entertainment applications. We present HoloCamera, an innovative volumetric capture instrument to rapidly acquire, process, and create cinematic-quality virtual avatars and scenarios. The HoloCamera consists of a custom-designed free-standing structure with 300 high-resolution RGB cameras mounted with uniform spacing spanning the four sides and the ceiling of a room-sized studio. The light field acquired from these cameras is streamed through a distributed array of GPUs that interleave the processing and transmission of 4K resolution images. The distributed compute infrastructure that powers these RGB cameras consists of 50 Jetson AGX Xavier boards, with each processing unit dedicated to driving and processing imagery from six cameras. A high-speed Gigabit Ethernet network fabric seamlessly interconnects all computing boards. In this systems paper, we provide an in-depth description of the steps involved and lessons learned in constructing such a cutting-edge volumetric capture facility that can be generalized to other such facilities. We delve into the techniques employed to achieve precise frame synchronization and spatial calibration of cameras, careful determination of angled camera mounts, image processing from the camera sensors, and the need for a resilient and robust network infrastructure. To advance the field of volumetric capture, we are releasing a high-fidelity static light-field dataset, which will serve as a benchmark for further research and applications of cinematic-quality volumetric light fields.</description><subject>Avatars</subject><subject>Cameras</subject><subject>Ethernet</subject><subject>Holoportation</subject><subject>Image processing</subject><subject>Infrastructure</subject><subject>Light fields</subject><subject>Multi-camera Array</subject><subject>Spatial calibration</subject><subject>Streaming media</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><subject>Volumetric Capture</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdR_Kj-AEEk4MVL6n5n11sJ2goVUWqvYbOZQCTJxt1E6L83pVXE0wzDMy8zD0KXBE8JwfputU7nU4opnzKWUELZATolmpMYCywPxx4nSUwllSfoLIQPjAnnSh-jE6aE5EzIU_S8cLVLTQPe3Eez4su0Fopo7eqhgd5XNkpN1w8eotL5KK1aaExf2fh1MHXVb6L1WzTrurqy49S14RwdlaYOcLGvE_T--LBKF_HyZf6UzpaxZZj2cY5ZKXWhgdEiT0BgIwolCwChrZUGiEi0YabEOSu5MJxaYktNSssTpWgObIJud7mdd58DhD5rqmChrk0LbggZw4xISfT45ATd_EM_3ODb8bqR4oRrLZQYKbKjrHcheCizzleN8ZuM4GzrOtu6zraus73rced6nzzkDRS_Gz9yR-BqB1QA8CeQK6WkZt_DiYKB</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Heagerty, Jonathan</creator><creator>Li, Sida</creator><creator>Lee, Eric</creator><creator>Bhattacharyya, Shuvra</creator><creator>Bista, Sujal</creator><creator>Brawn, Barbara</creator><creator>Feng, Brandon Y.</creator><creator>Jabbireddy, Susmija</creator><creator>JaJa, Joseph</creator><creator>Kacorri, Hernisa</creator><creator>Li, David</creator><creator>Yarnell, Derek</creator><creator>Zwicker, Matthias</creator><creator>Varshney, Amitabh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9873-2212</orcidid><orcidid>https://orcid.org/0000-0001-7719-1106</orcidid><orcidid>https://orcid.org/0000-0001-7003-9128</orcidid><orcidid>https://orcid.org/0009-0003-5865-3389</orcidid><orcidid>https://orcid.org/0000-0002-3187-6190</orcidid><orcidid>https://orcid.org/0009-0005-3834-9667</orcidid><orcidid>https://orcid.org/0009-0008-1140-6870</orcidid><orcidid>https://orcid.org/0000-0003-2601-821X</orcidid><orcidid>https://orcid.org/0000-0002-8620-5650</orcidid><orcidid>https://orcid.org/0000-0002-2221-3096</orcidid><orcidid>https://orcid.org/0000-0001-8630-5515</orcidid><orcidid>https://orcid.org/0009-0004-6020-8409</orcidid><orcidid>https://orcid.org/0009-0005-9761-0714</orcidid><orcidid>https://orcid.org/0000-0002-7798-308X</orcidid></search><sort><creationdate>20240501</creationdate><title>HoloCamera: Advanced Volumetric Capture for Cinematic-Quality VR Applications</title><author>Heagerty, Jonathan ; Li, Sida ; Lee, Eric ; Bhattacharyya, Shuvra ; Bista, Sujal ; Brawn, Barbara ; Feng, Brandon Y. ; Jabbireddy, Susmija ; JaJa, Joseph ; Kacorri, Hernisa ; Li, David ; Yarnell, Derek ; Zwicker, Matthias ; Varshney, Amitabh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-b03f69d9e32db7e50a5d86dee59cc6ae1579a3af0b3f45a42c1cf91fc47882be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Avatars</topic><topic>Cameras</topic><topic>Ethernet</topic><topic>Holoportation</topic><topic>Image processing</topic><topic>Infrastructure</topic><topic>Light fields</topic><topic>Multi-camera Array</topic><topic>Spatial calibration</topic><topic>Streaming media</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><topic>Volumetric Capture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heagerty, Jonathan</creatorcontrib><creatorcontrib>Li, Sida</creatorcontrib><creatorcontrib>Lee, Eric</creatorcontrib><creatorcontrib>Bhattacharyya, Shuvra</creatorcontrib><creatorcontrib>Bista, Sujal</creatorcontrib><creatorcontrib>Brawn, Barbara</creatorcontrib><creatorcontrib>Feng, Brandon Y.</creatorcontrib><creatorcontrib>Jabbireddy, Susmija</creatorcontrib><creatorcontrib>JaJa, Joseph</creatorcontrib><creatorcontrib>Kacorri, Hernisa</creatorcontrib><creatorcontrib>Li, David</creatorcontrib><creatorcontrib>Yarnell, Derek</creatorcontrib><creatorcontrib>Zwicker, Matthias</creatorcontrib><creatorcontrib>Varshney, Amitabh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heagerty, Jonathan</au><au>Li, Sida</au><au>Lee, Eric</au><au>Bhattacharyya, Shuvra</au><au>Bista, Sujal</au><au>Brawn, Barbara</au><au>Feng, Brandon Y.</au><au>Jabbireddy, Susmija</au><au>JaJa, Joseph</au><au>Kacorri, Hernisa</au><au>Li, David</au><au>Yarnell, Derek</au><au>Zwicker, Matthias</au><au>Varshney, Amitabh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HoloCamera: Advanced Volumetric Capture for Cinematic-Quality VR Applications</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>High-precision virtual environments are increasingly important for various education, simulation, training, performance, and entertainment applications. We present HoloCamera, an innovative volumetric capture instrument to rapidly acquire, process, and create cinematic-quality virtual avatars and scenarios. The HoloCamera consists of a custom-designed free-standing structure with 300 high-resolution RGB cameras mounted with uniform spacing spanning the four sides and the ceiling of a room-sized studio. The light field acquired from these cameras is streamed through a distributed array of GPUs that interleave the processing and transmission of 4K resolution images. The distributed compute infrastructure that powers these RGB cameras consists of 50 Jetson AGX Xavier boards, with each processing unit dedicated to driving and processing imagery from six cameras. A high-speed Gigabit Ethernet network fabric seamlessly interconnects all computing boards. In this systems paper, we provide an in-depth description of the steps involved and lessons learned in constructing such a cutting-edge volumetric capture facility that can be generalized to other such facilities. We delve into the techniques employed to achieve precise frame synchronization and spatial calibration of cameras, careful determination of angled camera mounts, image processing from the camera sensors, and the need for a resilient and robust network infrastructure. To advance the field of volumetric capture, we are releasing a high-fidelity static light-field dataset, which will serve as a benchmark for further research and applications of cinematic-quality volumetric light fields.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38564356</pmid><doi>10.1109/TVCG.2024.3372123</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9873-2212</orcidid><orcidid>https://orcid.org/0000-0001-7719-1106</orcidid><orcidid>https://orcid.org/0000-0001-7003-9128</orcidid><orcidid>https://orcid.org/0009-0003-5865-3389</orcidid><orcidid>https://orcid.org/0000-0002-3187-6190</orcidid><orcidid>https://orcid.org/0009-0005-3834-9667</orcidid><orcidid>https://orcid.org/0009-0008-1140-6870</orcidid><orcidid>https://orcid.org/0000-0003-2601-821X</orcidid><orcidid>https://orcid.org/0000-0002-8620-5650</orcidid><orcidid>https://orcid.org/0000-0002-2221-3096</orcidid><orcidid>https://orcid.org/0000-0001-8630-5515</orcidid><orcidid>https://orcid.org/0009-0004-6020-8409</orcidid><orcidid>https://orcid.org/0009-0005-9761-0714</orcidid><orcidid>https://orcid.org/0000-0002-7798-308X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2024-05, Vol.30 (5), p.1-9
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_3031661964
source IEEE Electronic Library (IEL)
subjects Avatars
Cameras
Ethernet
Holoportation
Image processing
Infrastructure
Light fields
Multi-camera Array
Spatial calibration
Streaming media
Synchronism
Synchronization
Three-dimensional displays
Training
Virtual environments
Virtual reality
Volumetric Capture
title HoloCamera: Advanced Volumetric Capture for Cinematic-Quality VR Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HoloCamera:%20Advanced%20Volumetric%20Capture%20for%20Cinematic-Quality%20VR%20Applications&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Heagerty,%20Jonathan&rft.date=2024-05-01&rft.volume=30&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3372123&rft_dat=%3Cproquest_RIE%3E3041499585%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041499585&rft_id=info:pmid/38564356&rft_ieee_id=10488869&rfr_iscdi=true