Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors

Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18824-18832
Hauptverfasser: Chen, Qiang, Tang, Zheyu, Li, Hang, Liang, Wenlong, Zeng, Yuquan, Zhang, Jianli, Hou, Guangya, Tang, Yiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18832
container_issue 15
container_start_page 18824
container_title ACS applied materials & interfaces
container_volume 16
creator Chen, Qiang
Tang, Zheyu
Li, Hang
Liang, Wenlong
Zeng, Yuquan
Zhang, Jianli
Hou, Guangya
Tang, Yiping
description Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.
doi_str_mv 10.1021/acsami.3c19534
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031660843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031660843</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-5b9c48a1542eba1b4b5851da70065032e9de86d3a9a344ff47afc5da7d015dd63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFavnvcoQup-pskxBLWBQg9Vr8vsR2BLko3Z5KC_3oQWTzMwj-HxEHqkZEMJoy9gIrR-ww3NJRdXaEVzIZKMSXb9vwtxi-5iPBGSckbkClVl0NCMuApdchxB-8b_Oou_DgzXYcDF9-TCFHHRtqHzU7twePejB2_xcerdYKAH48cwxHt0U0MT3cNlrtHn2-tHuUv2h_eqLPYJMMbHROrciAyoFMxpoFpomUlqYTsrScKZy63LUsshBy5EXYst1EbOd0uotDbla_R0_tsPYbaLo2p9NK5poFtUFSecpinJBJ_R5zM6p1GnMA3dLKYoUUsvde6lLr34H4ooXrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031660843</pqid></control><display><type>article</type><title>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</title><source>American Chemical Society Journals</source><creator>Chen, Qiang ; Tang, Zheyu ; Li, Hang ; Liang, Wenlong ; Zeng, Yuquan ; Zhang, Jianli ; Hou, Guangya ; Tang, Yiping</creator><creatorcontrib>Chen, Qiang ; Tang, Zheyu ; Li, Hang ; Liang, Wenlong ; Zeng, Yuquan ; Zhang, Jianli ; Hou, Guangya ; Tang, Yiping</creatorcontrib><description>Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c19534</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (15), p.18824-18832</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7007-2630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c19534$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c19534$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Tang, Zheyu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Liang, Wenlong</creatorcontrib><creatorcontrib>Zeng, Yuquan</creatorcontrib><creatorcontrib>Zhang, Jianli</creatorcontrib><creatorcontrib>Hou, Guangya</creatorcontrib><creatorcontrib>Tang, Yiping</creatorcontrib><title>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQQBdRsFavnvcoQup-pskxBLWBQg9Vr8vsR2BLko3Z5KC_3oQWTzMwj-HxEHqkZEMJoy9gIrR-ww3NJRdXaEVzIZKMSXb9vwtxi-5iPBGSckbkClVl0NCMuApdchxB-8b_Oou_DgzXYcDF9-TCFHHRtqHzU7twePejB2_xcerdYKAH48cwxHt0U0MT3cNlrtHn2-tHuUv2h_eqLPYJMMbHROrciAyoFMxpoFpomUlqYTsrScKZy63LUsshBy5EXYst1EbOd0uotDbla_R0_tsPYbaLo2p9NK5poFtUFSecpinJBJ_R5zM6p1GnMA3dLKYoUUsvde6lLr34H4ooXrM</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Chen, Qiang</creator><creator>Tang, Zheyu</creator><creator>Li, Hang</creator><creator>Liang, Wenlong</creator><creator>Zeng, Yuquan</creator><creator>Zhang, Jianli</creator><creator>Hou, Guangya</creator><creator>Tang, Yiping</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7007-2630</orcidid></search><sort><creationdate>20240417</creationdate><title>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</title><author>Chen, Qiang ; Tang, Zheyu ; Li, Hang ; Liang, Wenlong ; Zeng, Yuquan ; Zhang, Jianli ; Hou, Guangya ; Tang, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-5b9c48a1542eba1b4b5851da70065032e9de86d3a9a344ff47afc5da7d015dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Tang, Zheyu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Liang, Wenlong</creatorcontrib><creatorcontrib>Zeng, Yuquan</creatorcontrib><creatorcontrib>Zhang, Jianli</creatorcontrib><creatorcontrib>Hou, Guangya</creatorcontrib><creatorcontrib>Tang, Yiping</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiang</au><au>Tang, Zheyu</au><au>Li, Hang</au><au>Liang, Wenlong</au><au>Zeng, Yuquan</au><au>Zhang, Jianli</au><au>Hou, Guangya</au><au>Tang, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>18824</spage><epage>18832</epage><pages>18824-18832</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c19534</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7007-2630</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18824-18832
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3031660843
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20Ion-Stabilized%20VO2%20for%20Aqueous%20Ammonium%20Ion%20Hybrid%20Supercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Qiang&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=18824&rft.epage=18832&rft.pages=18824-18832&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c19534&rft_dat=%3Cproquest_acs_j%3E3031660843%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031660843&rft_id=info:pmid/&rfr_iscdi=true