Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors
Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes,...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18824-18832 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18832 |
---|---|
container_issue | 15 |
container_start_page | 18824 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Chen, Qiang Tang, Zheyu Li, Hang Liang, Wenlong Zeng, Yuquan Zhang, Jianli Hou, Guangya Tang, Yiping |
description | Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed. |
doi_str_mv | 10.1021/acsami.3c19534 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031660843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031660843</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-5b9c48a1542eba1b4b5851da70065032e9de86d3a9a344ff47afc5da7d015dd63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFavnvcoQup-pskxBLWBQg9Vr8vsR2BLko3Z5KC_3oQWTzMwj-HxEHqkZEMJoy9gIrR-ww3NJRdXaEVzIZKMSXb9vwtxi-5iPBGSckbkClVl0NCMuApdchxB-8b_Oou_DgzXYcDF9-TCFHHRtqHzU7twePejB2_xcerdYKAH48cwxHt0U0MT3cNlrtHn2-tHuUv2h_eqLPYJMMbHROrciAyoFMxpoFpomUlqYTsrScKZy63LUsshBy5EXYst1EbOd0uotDbla_R0_tsPYbaLo2p9NK5poFtUFSecpinJBJ_R5zM6p1GnMA3dLKYoUUsvde6lLr34H4ooXrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031660843</pqid></control><display><type>article</type><title>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</title><source>American Chemical Society Journals</source><creator>Chen, Qiang ; Tang, Zheyu ; Li, Hang ; Liang, Wenlong ; Zeng, Yuquan ; Zhang, Jianli ; Hou, Guangya ; Tang, Yiping</creator><creatorcontrib>Chen, Qiang ; Tang, Zheyu ; Li, Hang ; Liang, Wenlong ; Zeng, Yuquan ; Zhang, Jianli ; Hou, Guangya ; Tang, Yiping</creatorcontrib><description>Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c19534</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18824-18832</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7007-2630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c19534$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c19534$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Tang, Zheyu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Liang, Wenlong</creatorcontrib><creatorcontrib>Zeng, Yuquan</creatorcontrib><creatorcontrib>Zhang, Jianli</creatorcontrib><creatorcontrib>Hou, Guangya</creatorcontrib><creatorcontrib>Tang, Yiping</creatorcontrib><title>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQQBdRsFavnvcoQup-pskxBLWBQg9Vr8vsR2BLko3Z5KC_3oQWTzMwj-HxEHqkZEMJoy9gIrR-ww3NJRdXaEVzIZKMSXb9vwtxi-5iPBGSckbkClVl0NCMuApdchxB-8b_Oou_DgzXYcDF9-TCFHHRtqHzU7twePejB2_xcerdYKAH48cwxHt0U0MT3cNlrtHn2-tHuUv2h_eqLPYJMMbHROrciAyoFMxpoFpomUlqYTsrScKZy63LUsshBy5EXYst1EbOd0uotDbla_R0_tsPYbaLo2p9NK5poFtUFSecpinJBJ_R5zM6p1GnMA3dLKYoUUsvde6lLr34H4ooXrM</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Chen, Qiang</creator><creator>Tang, Zheyu</creator><creator>Li, Hang</creator><creator>Liang, Wenlong</creator><creator>Zeng, Yuquan</creator><creator>Zhang, Jianli</creator><creator>Hou, Guangya</creator><creator>Tang, Yiping</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7007-2630</orcidid></search><sort><creationdate>20240417</creationdate><title>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</title><author>Chen, Qiang ; Tang, Zheyu ; Li, Hang ; Liang, Wenlong ; Zeng, Yuquan ; Zhang, Jianli ; Hou, Guangya ; Tang, Yiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-5b9c48a1542eba1b4b5851da70065032e9de86d3a9a344ff47afc5da7d015dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Tang, Zheyu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Liang, Wenlong</creatorcontrib><creatorcontrib>Zeng, Yuquan</creatorcontrib><creatorcontrib>Zhang, Jianli</creatorcontrib><creatorcontrib>Hou, Guangya</creatorcontrib><creatorcontrib>Tang, Yiping</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiang</au><au>Tang, Zheyu</au><au>Li, Hang</au><au>Liang, Wenlong</au><au>Zeng, Yuquan</au><au>Zhang, Jianli</au><au>Hou, Guangya</au><au>Tang, Yiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>18824</spage><epage>18832</epage><pages>18824-18832</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Aqueous ammonium ion hybrid supercapacitor (A-HSC) is an efficient energy storage device based on nonmetallic ion carriers (NH4 +), which combines advantages such as low cost, safety, and sustainability. However, unstable electrode structures are prone to structural collapse in aqueous electrolytes, leading to fast capacitance decay, especially in host materials represented by vanadium-based oxidation. Here, the Co2+ preintercalation strategy is used to stabilize the VO2 tunnel structure and improve the electrochemical stability of the fast NH4 + storage process. In addition, the understanding of the NH4 + storage mechanism has been deepened through ex situ structural characterization and electrochemical analysis. The results indicate that Co2+ preintercalation effectively enhances the conductivity and structural stability of VO2, and inhibits the dissolution of V in aqueous electrolytes. In addition, the charge storage mechanisms of NH4 + intercalation/deintercalation and the reversible formation/fracture of hydrogen bonds were revealed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c19534</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7007-2630</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.18824-18832 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3031660843 |
source | American Chemical Society Journals |
subjects | Energy, Environmental, and Catalysis Applications |
title | Cobalt Ion-Stabilized VO2 for Aqueous Ammonium Ion Hybrid Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20Ion-Stabilized%20VO2%20for%20Aqueous%20Ammonium%20Ion%20Hybrid%20Supercapacitors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Qiang&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=18824&rft.epage=18832&rft.pages=18824-18832&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c19534&rft_dat=%3Cproquest_acs_j%3E3031660843%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031660843&rft_id=info:pmid/&rfr_iscdi=true |