Pleiotropy, epistasis and the genetic architecture of quantitative traits
Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the eff...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Genetics 2024-09, Vol.25 (9), p.639-657 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 657 |
---|---|
container_issue | 9 |
container_start_page | 639 |
container_title | Nature reviews. Genetics |
container_volume | 25 |
creator | Mackay, Trudy F. C. Anholt, Robert R. H. |
description | Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
In this Review, Mackay and Anholt discuss how epistasis and pleiotropy contribute to the genetic architecture of quantitative traits and outline factors that might explain observed differences in their prevalence between model organisms and humans. |
doi_str_mv | 10.1038/s41576-024-00711-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031660371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093694071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bfb03990b7dcaca9c0ced2c9d0cbb28efa51a1acc49e3073aade9b8d62003b0e3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4Mobk6_gAcpePFg9U3Tps1Rhn8GAz3oOaTp2y2ja7skFfbtreuc4MFTEvL8fu_LQ8glhTsKLLt3MU1SHkIUhwAppSE7ImMap7R_8vj4cE_4iJw5twKgnKbslIxYlvBE8GhMZm8Vmsbbpt3eBtga55UzLlB1EfglBgus0RsdKKuXxqP2ncWgKYNNp2pvvPLmEwNvlfHunJyUqnJ4sT8n5OPp8X36Es5fn2fTh3moWcR9mJc5MCEgTwuttBIaNBaRFgXoPI8yLFVCFVVaxwIZpEypAkWeFTwCYDkgm5Cbobe1zaZD5-XaOI1VpWpsOicZMMo5sJT26PUfdNV0tu636ynBuIhhR0UDpW3jnMVSttasld1KCvJbtBxEy1603ImWrA9d7au7fI3FIfJjtgfYALj-q16g_Z39T-0XK5mJ7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093694071</pqid></control><display><type>article</type><title>Pleiotropy, epistasis and the genetic architecture of quantitative traits</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Mackay, Trudy F. C. ; Anholt, Robert R. H.</creator><creatorcontrib>Mackay, Trudy F. C. ; Anholt, Robert R. H.</creatorcontrib><description>Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
In this Review, Mackay and Anholt discuss how epistasis and pleiotropy contribute to the genetic architecture of quantitative traits and outline factors that might explain observed differences in their prevalence between model organisms and humans.</description><identifier>ISSN: 1471-0056</identifier><identifier>ISSN: 1471-0064</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-024-00711-3</identifier><identifier>PMID: 38565962</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/191/1472 ; 631/208/200 ; 631/208/2490 ; 631/208/457 ; 631/208/729 ; Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Epistasis ; Gene Function ; Gene polymorphism ; Human Genetics ; Organisms ; Phenotypes ; Pleiotropy ; Population genetics ; Review Article</subject><ispartof>Nature reviews. Genetics, 2024-09, Vol.25 (9), p.639-657</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-bfb03990b7dcaca9c0ced2c9d0cbb28efa51a1acc49e3073aade9b8d62003b0e3</cites><orcidid>0000-0002-2312-7245 ; 0000-0001-7196-8324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-024-00711-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-024-00711-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38565962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mackay, Trudy F. C.</creatorcontrib><creatorcontrib>Anholt, Robert R. H.</creatorcontrib><title>Pleiotropy, epistasis and the genetic architecture of quantitative traits</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
In this Review, Mackay and Anholt discuss how epistasis and pleiotropy contribute to the genetic architecture of quantitative traits and outline factors that might explain observed differences in their prevalence between model organisms and humans.</description><subject>631/208/191/1472</subject><subject>631/208/200</subject><subject>631/208/2490</subject><subject>631/208/457</subject><subject>631/208/729</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Epistasis</subject><subject>Gene Function</subject><subject>Gene polymorphism</subject><subject>Human Genetics</subject><subject>Organisms</subject><subject>Phenotypes</subject><subject>Pleiotropy</subject><subject>Population genetics</subject><subject>Review Article</subject><issn>1471-0056</issn><issn>1471-0064</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4Mobk6_gAcpePFg9U3Tps1Rhn8GAz3oOaTp2y2ja7skFfbtreuc4MFTEvL8fu_LQ8glhTsKLLt3MU1SHkIUhwAppSE7ImMap7R_8vj4cE_4iJw5twKgnKbslIxYlvBE8GhMZm8Vmsbbpt3eBtga55UzLlB1EfglBgus0RsdKKuXxqP2ncWgKYNNp2pvvPLmEwNvlfHunJyUqnJ4sT8n5OPp8X36Es5fn2fTh3moWcR9mJc5MCEgTwuttBIaNBaRFgXoPI8yLFVCFVVaxwIZpEypAkWeFTwCYDkgm5Cbobe1zaZD5-XaOI1VpWpsOicZMMo5sJT26PUfdNV0tu636ynBuIhhR0UDpW3jnMVSttasld1KCvJbtBxEy1603ImWrA9d7au7fI3FIfJjtgfYALj-q16g_Z39T-0XK5mJ7w</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Mackay, Trudy F. C.</creator><creator>Anholt, Robert R. H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2312-7245</orcidid><orcidid>https://orcid.org/0000-0001-7196-8324</orcidid></search><sort><creationdate>20240901</creationdate><title>Pleiotropy, epistasis and the genetic architecture of quantitative traits</title><author>Mackay, Trudy F. C. ; Anholt, Robert R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bfb03990b7dcaca9c0ced2c9d0cbb28efa51a1acc49e3073aade9b8d62003b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/208/191/1472</topic><topic>631/208/200</topic><topic>631/208/2490</topic><topic>631/208/457</topic><topic>631/208/729</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Epistasis</topic><topic>Gene Function</topic><topic>Gene polymorphism</topic><topic>Human Genetics</topic><topic>Organisms</topic><topic>Phenotypes</topic><topic>Pleiotropy</topic><topic>Population genetics</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackay, Trudy F. C.</creatorcontrib><creatorcontrib>Anholt, Robert R. H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackay, Trudy F. C.</au><au>Anholt, Robert R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pleiotropy, epistasis and the genetic architecture of quantitative traits</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>25</volume><issue>9</issue><spage>639</spage><epage>657</epage><pages>639-657</pages><issn>1471-0056</issn><issn>1471-0064</issn><eissn>1471-0064</eissn><abstract>Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
In this Review, Mackay and Anholt discuss how epistasis and pleiotropy contribute to the genetic architecture of quantitative traits and outline factors that might explain observed differences in their prevalence between model organisms and humans.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38565962</pmid><doi>10.1038/s41576-024-00711-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2312-7245</orcidid><orcidid>https://orcid.org/0000-0001-7196-8324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0056 |
ispartof | Nature reviews. Genetics, 2024-09, Vol.25 (9), p.639-657 |
issn | 1471-0056 1471-0064 1471-0064 |
language | eng |
recordid | cdi_proquest_miscellaneous_3031660371 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 631/208/191/1472 631/208/200 631/208/2490 631/208/457 631/208/729 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Epistasis Gene Function Gene polymorphism Human Genetics Organisms Phenotypes Pleiotropy Population genetics Review Article |
title | Pleiotropy, epistasis and the genetic architecture of quantitative traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pleiotropy,%20epistasis%20and%20the%20genetic%20architecture%20of%20quantitative%20traits&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Mackay,%20Trudy%20F.%20C.&rft.date=2024-09-01&rft.volume=25&rft.issue=9&rft.spage=639&rft.epage=657&rft.pages=639-657&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-024-00711-3&rft_dat=%3Cproquest_cross%3E3093694071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093694071&rft_id=info:pmid/38565962&rfr_iscdi=true |