Microwave photonics frequency measurement with improved accuracy based on an artificial neural network

Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2024-04, Vol.63 (10), p.2535-2542
Hauptverfasser: An, Xin, Yang, Zhangyi, Liu, Zuoheng, Zhang, Youdi, Dong, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2542
container_issue 10
container_start_page 2535
container_title Applied optics (2004)
container_volume 63
creator An, Xin
Yang, Zhangyi
Liu, Zuoheng
Zhang, Youdi
Dong, Wei
description Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-frequency and wide-band signals. However, the accuracy of the MFM system in multi-tone frequency measurement is constrained by the SBS bandwidth and the nonlinearity of the system. To resolve this problem, a method based on an artificial neural network (ANN) is suggested, which can establish a nonlinear mapping between the measured two-tone signal spectra and the theoretical frequencies. Through simulation verification, the ANN optimized frequencies within the range of (0.5, 27) GHz of the MFM system show 79%, 76%, 70%, 44% reduction in errors separately under four spectral signal-to-noise ratios (SNR) conditions, 20 dB, 15 dB, 10 dB, 0 dB, and the frequency resolution is improved from 30 MHz to 10 MHz.
doi_str_mv 10.1364/AO.519402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031658396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033096197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-59c485f9b045f0980740fdb3942aa6b882d904109a0be47ac2a16a6ba23a90a93</originalsourceid><addsrcrecordid>eNpdkN9LwzAQgIMobk4f_Aek4Is-dCZN0iaPY_gLJntR8K1c05Rlts1M2o3996Zs-iAc3B33cdx9CF0TPCU0ZQ-z5ZQTyXBygsYJ4TymJOWnaBxKGZNEfI7QhfdrjClnMjtHIyp4KjilY1S9GeXsDrY62qxsZ1ujfFQ5_d3rVu2jRoPvnW5020U7060i02yc3eoyAqV6BwEpwIfWthGEcJ2pjDJQR60O4yF1O-u-LtFZBbXXV8c8QR9Pj-_zl3ixfH6dzxaxSjLaxVwqJnglC8x4haXAGcNVWVDJEoC0ECIpJWYES8CFZhmoBEgaBpBQkBgknaC7w95wZXjBd3ljvNJ1Da22vc8pHtQIKtOA3v5D17Z3bbhuoCiWKZFZoO4PVLDkvdNVvnGmAbfPCc4H-flsmR_kB_bmuLEvGl3-kb-26Q8Bwn9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033096197</pqid></control><display><type>article</type><title>Microwave photonics frequency measurement with improved accuracy based on an artificial neural network</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>An, Xin ; Yang, Zhangyi ; Liu, Zuoheng ; Zhang, Youdi ; Dong, Wei</creator><creatorcontrib>An, Xin ; Yang, Zhangyi ; Liu, Zuoheng ; Zhang, Youdi ; Dong, Wei</creatorcontrib><description>Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-frequency and wide-band signals. However, the accuracy of the MFM system in multi-tone frequency measurement is constrained by the SBS bandwidth and the nonlinearity of the system. To resolve this problem, a method based on an artificial neural network (ANN) is suggested, which can establish a nonlinear mapping between the measured two-tone signal spectra and the theoretical frequencies. Through simulation verification, the ANN optimized frequencies within the range of (0.5, 27) GHz of the MFM system show 79%, 76%, 70%, 44% reduction in errors separately under four spectral signal-to-noise ratios (SNR) conditions, 20 dB, 15 dB, 10 dB, 0 dB, and the frequency resolution is improved from 30 MHz to 10 MHz.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.519402</identifier><identifier>PMID: 38568533</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Artificial neural networks ; Frequency measurement ; Microwave frequencies ; Microwave photonics ; Nonlinearity ; Photonics ; Signal to noise ratio</subject><ispartof>Applied optics (2004), 2024-04, Vol.63 (10), p.2535-2542</ispartof><rights>Copyright Optical Society of America Apr 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-59c485f9b045f0980740fdb3942aa6b882d904109a0be47ac2a16a6ba23a90a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38568533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Xin</creatorcontrib><creatorcontrib>Yang, Zhangyi</creatorcontrib><creatorcontrib>Liu, Zuoheng</creatorcontrib><creatorcontrib>Zhang, Youdi</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><title>Microwave photonics frequency measurement with improved accuracy based on an artificial neural network</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-frequency and wide-band signals. However, the accuracy of the MFM system in multi-tone frequency measurement is constrained by the SBS bandwidth and the nonlinearity of the system. To resolve this problem, a method based on an artificial neural network (ANN) is suggested, which can establish a nonlinear mapping between the measured two-tone signal spectra and the theoretical frequencies. Through simulation verification, the ANN optimized frequencies within the range of (0.5, 27) GHz of the MFM system show 79%, 76%, 70%, 44% reduction in errors separately under four spectral signal-to-noise ratios (SNR) conditions, 20 dB, 15 dB, 10 dB, 0 dB, and the frequency resolution is improved from 30 MHz to 10 MHz.</description><subject>Artificial neural networks</subject><subject>Frequency measurement</subject><subject>Microwave frequencies</subject><subject>Microwave photonics</subject><subject>Nonlinearity</subject><subject>Photonics</subject><subject>Signal to noise ratio</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQgIMobk4f_Aek4Is-dCZN0iaPY_gLJntR8K1c05Rlts1M2o3996Zs-iAc3B33cdx9CF0TPCU0ZQ-z5ZQTyXBygsYJ4TymJOWnaBxKGZNEfI7QhfdrjClnMjtHIyp4KjilY1S9GeXsDrY62qxsZ1ujfFQ5_d3rVu2jRoPvnW5020U7060i02yc3eoyAqV6BwEpwIfWthGEcJ2pjDJQR60O4yF1O-u-LtFZBbXXV8c8QR9Pj-_zl3ixfH6dzxaxSjLaxVwqJnglC8x4haXAGcNVWVDJEoC0ECIpJWYES8CFZhmoBEgaBpBQkBgknaC7w95wZXjBd3ljvNJ1Da22vc8pHtQIKtOA3v5D17Z3bbhuoCiWKZFZoO4PVLDkvdNVvnGmAbfPCc4H-flsmR_kB_bmuLEvGl3-kb-26Q8Bwn9b</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>An, Xin</creator><creator>Yang, Zhangyi</creator><creator>Liu, Zuoheng</creator><creator>Zhang, Youdi</creator><creator>Dong, Wei</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240401</creationdate><title>Microwave photonics frequency measurement with improved accuracy based on an artificial neural network</title><author>An, Xin ; Yang, Zhangyi ; Liu, Zuoheng ; Zhang, Youdi ; Dong, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-59c485f9b045f0980740fdb3942aa6b882d904109a0be47ac2a16a6ba23a90a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Frequency measurement</topic><topic>Microwave frequencies</topic><topic>Microwave photonics</topic><topic>Nonlinearity</topic><topic>Photonics</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Xin</creatorcontrib><creatorcontrib>Yang, Zhangyi</creatorcontrib><creatorcontrib>Liu, Zuoheng</creatorcontrib><creatorcontrib>Zhang, Youdi</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Xin</au><au>Yang, Zhangyi</au><au>Liu, Zuoheng</au><au>Zhang, Youdi</au><au>Dong, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave photonics frequency measurement with improved accuracy based on an artificial neural network</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>63</volume><issue>10</issue><spage>2535</spage><epage>2542</epage><pages>2535-2542</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-frequency and wide-band signals. However, the accuracy of the MFM system in multi-tone frequency measurement is constrained by the SBS bandwidth and the nonlinearity of the system. To resolve this problem, a method based on an artificial neural network (ANN) is suggested, which can establish a nonlinear mapping between the measured two-tone signal spectra and the theoretical frequencies. Through simulation verification, the ANN optimized frequencies within the range of (0.5, 27) GHz of the MFM system show 79%, 76%, 70%, 44% reduction in errors separately under four spectral signal-to-noise ratios (SNR) conditions, 20 dB, 15 dB, 10 dB, 0 dB, and the frequency resolution is improved from 30 MHz to 10 MHz.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>38568533</pmid><doi>10.1364/AO.519402</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2024-04, Vol.63 (10), p.2535-2542
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_3031658396
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Artificial neural networks
Frequency measurement
Microwave frequencies
Microwave photonics
Nonlinearity
Photonics
Signal to noise ratio
title Microwave photonics frequency measurement with improved accuracy based on an artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20photonics%20frequency%20measurement%20with%20improved%20accuracy%20based%20on%20an%20artificial%20neural%20network&rft.jtitle=Applied%20optics%20(2004)&rft.au=An,%20Xin&rft.date=2024-04-01&rft.volume=63&rft.issue=10&rft.spage=2535&rft.epage=2542&rft.pages=2535-2542&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.519402&rft_dat=%3Cproquest_cross%3E3033096197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033096197&rft_id=info:pmid/38568533&rfr_iscdi=true