Proposed Quantum Twisting Scanning Probe Microscope over Twisted Bilayer Graphene

Twisted bilayer graphene (TBG) has the natural merits of tunable flat bands and localized states distributed as a triangular lattice. However, the application of this state remains obscure. By density functional theory (DFT) and p z orbital tight-binding model calculations, we investigate the tip-sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-04, Vol.24 (15), p.4433-4438
Hauptverfasser: Ke, Yifan, Wan, Lingyun, Qin, Xinming, Hu, Wei, Yang, Jinlong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twisted bilayer graphene (TBG) has the natural merits of tunable flat bands and localized states distributed as a triangular lattice. However, the application of this state remains obscure. By density functional theory (DFT) and p z orbital tight-binding model calculations, we investigate the tip-shaped electrostatic potential of top valence electrons of TBG at half filling. Adsorption energy scanning of molecules above the TBG reveals that this tip efficiently attracts molecules selectively to AA-stacked or AB-stacked regions. Tip shapes can be controlled by their underlying electronic structure, with electrons of low bandwidth exhibiting a more localized feature. Our results indicate that TBG tips offer applications in noninvasive and nonpolluting measurements in scanning probe microscopy and theoretical guidance for 2D material-based probes.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.4c00205