Organic aerosol formation from the oxidation of biogenic hydrocarbons

A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol‐forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 1999-02, Vol.104 (D3), p.3555-3567
Hauptverfasser: Griffin, Robert J., Cocker, David R., Flagan, Richard C., Seinfeld, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3567
container_issue D3
container_start_page 3555
container_title Journal of Geophysical Research
container_volume 104
creator Griffin, Robert J.
Cocker, David R.
Flagan, Richard C.
Seinfeld, John H.
description A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol‐forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for these types of compounds. Because oxidation products partition between the gas and aerosol phases, the aerosol yields of the parent biogenic hydrocarbons depend on the concentration of organic aerosol into which these products can be absorbed. For organic mass concentrations between 5 and 40 μg m−3, mass‐based yields in photooxidation experiments range from 17 to 67% for sesquiterpenes, from 2 to 23% for cyclic diolefins, from 2 to 15% for bicyclic olefins, and from 2 to 6% for the acyclic triolefin ocimene. In these photooxidation experiments, hydroxyl and nitrate radicals and ozone can contribute to consumption of the parent hydrocarbon. For bicyclic olefins (α‐pinene, β‐pinene, Δ3‐carene, and sabinene), experiments were also carried out at daytime temperatures in a dark system in the presence of ozone or nitrate radicals alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic mass concentration, when compared to full, sunlight‐driven photooxidation. Nitrate radical experiments exhibit extremely high conversion to aerosol for β‐pinene, sabinene, and Δ3‐carene. The relative importance of aerosol formation from each type of reaction for bicyclic olefin photooxidation is elucidated.
doi_str_mv 10.1029/1998JD100049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30298952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18103775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-d682782d4bbfa0fe75c8f248f633609d7ddb2137c2bb5a3d0d268a20303cb9923</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi1EJaLSGz9gD4gTC-Px-uuIkiZQVW1VFXG0vP5oDZt1sVPR_Hs22go40dNIo-d5NfMS8obCBwqoP1Kt1dmKAkCnX5AFUi5aRMCXZAG0Uy0gylfkpNbvcGC46IAuyOllubVjco0NJdc8NDGXrd2lPDax5G2zuwtNfkx-XuXY9CnfhoNwt_clO1v6PNbX5CjaoYaTp3lMvq5Pb5af2_PLzZflp_PWcdC89UKhVOi7vo8WYpDcqYidioIxAdpL73ukTDrse26ZB49CWQQGzPVaIzsm7-bc-5J_PoS6M9tUXRgGO4b8UA2bilCaPw9SRYFJySfw_Qy66f1aQjT3JW1t2RsK5tCr-bfXCX_7lGurs0MsdnSp_nUkQ9F1E4Yz9isNYf_fSHO2uV4J5IdT2llKdRce_0i2_DBCMsnNt4uNuVqvxc1quTIX7DcbmpQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18103775</pqid></control><display><type>article</type><title>Organic aerosol formation from the oxidation of biogenic hydrocarbons</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Griffin, Robert J. ; Cocker, David R. ; Flagan, Richard C. ; Seinfeld, John H.</creator><creatorcontrib>Griffin, Robert J. ; Cocker, David R. ; Flagan, Richard C. ; Seinfeld, John H.</creatorcontrib><description>A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol‐forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for these types of compounds. Because oxidation products partition between the gas and aerosol phases, the aerosol yields of the parent biogenic hydrocarbons depend on the concentration of organic aerosol into which these products can be absorbed. For organic mass concentrations between 5 and 40 μg m−3, mass‐based yields in photooxidation experiments range from 17 to 67% for sesquiterpenes, from 2 to 23% for cyclic diolefins, from 2 to 15% for bicyclic olefins, and from 2 to 6% for the acyclic triolefin ocimene. In these photooxidation experiments, hydroxyl and nitrate radicals and ozone can contribute to consumption of the parent hydrocarbon. For bicyclic olefins (α‐pinene, β‐pinene, Δ3‐carene, and sabinene), experiments were also carried out at daytime temperatures in a dark system in the presence of ozone or nitrate radicals alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic mass concentration, when compared to full, sunlight‐driven photooxidation. Nitrate radical experiments exhibit extremely high conversion to aerosol for β‐pinene, sabinene, and Δ3‐carene. The relative importance of aerosol formation from each type of reaction for bicyclic olefin photooxidation is elucidated.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/1998JD100049</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Particles and aerosols</subject><ispartof>Journal of Geophysical Research, 1999-02, Vol.104 (D3), p.3555-3567</ispartof><rights>Copyright 1999 by the American Geophysical Union.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-d682782d4bbfa0fe75c8f248f633609d7ddb2137c2bb5a3d0d268a20303cb9923</citedby><cites>FETCH-LOGICAL-c5095-d682782d4bbfa0fe75c8f248f633609d7ddb2137c2bb5a3d0d268a20303cb9923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1998JD100049$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1998JD100049$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1732644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Griffin, Robert J.</creatorcontrib><creatorcontrib>Cocker, David R.</creatorcontrib><creatorcontrib>Flagan, Richard C.</creatorcontrib><creatorcontrib>Seinfeld, John H.</creatorcontrib><title>Organic aerosol formation from the oxidation of biogenic hydrocarbons</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol‐forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for these types of compounds. Because oxidation products partition between the gas and aerosol phases, the aerosol yields of the parent biogenic hydrocarbons depend on the concentration of organic aerosol into which these products can be absorbed. For organic mass concentrations between 5 and 40 μg m−3, mass‐based yields in photooxidation experiments range from 17 to 67% for sesquiterpenes, from 2 to 23% for cyclic diolefins, from 2 to 15% for bicyclic olefins, and from 2 to 6% for the acyclic triolefin ocimene. In these photooxidation experiments, hydroxyl and nitrate radicals and ozone can contribute to consumption of the parent hydrocarbon. For bicyclic olefins (α‐pinene, β‐pinene, Δ3‐carene, and sabinene), experiments were also carried out at daytime temperatures in a dark system in the presence of ozone or nitrate radicals alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic mass concentration, when compared to full, sunlight‐driven photooxidation. Nitrate radical experiments exhibit extremely high conversion to aerosol for β‐pinene, sabinene, and Δ3‐carene. The relative importance of aerosol formation from each type of reaction for bicyclic olefin photooxidation is elucidated.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Particles and aerosols</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi1EJaLSGz9gD4gTC-Px-uuIkiZQVW1VFXG0vP5oDZt1sVPR_Hs22go40dNIo-d5NfMS8obCBwqoP1Kt1dmKAkCnX5AFUi5aRMCXZAG0Uy0gylfkpNbvcGC46IAuyOllubVjco0NJdc8NDGXrd2lPDax5G2zuwtNfkx-XuXY9CnfhoNwt_clO1v6PNbX5CjaoYaTp3lMvq5Pb5af2_PLzZflp_PWcdC89UKhVOi7vo8WYpDcqYidioIxAdpL73ukTDrse26ZB49CWQQGzPVaIzsm7-bc-5J_PoS6M9tUXRgGO4b8UA2bilCaPw9SRYFJySfw_Qy66f1aQjT3JW1t2RsK5tCr-bfXCX_7lGurs0MsdnSp_nUkQ9F1E4Yz9isNYf_fSHO2uV4J5IdT2llKdRce_0i2_DBCMsnNt4uNuVqvxc1quTIX7DcbmpQV</recordid><startdate>19990220</startdate><enddate>19990220</enddate><creator>Griffin, Robert J.</creator><creator>Cocker, David R.</creator><creator>Flagan, Richard C.</creator><creator>Seinfeld, John H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19990220</creationdate><title>Organic aerosol formation from the oxidation of biogenic hydrocarbons</title><author>Griffin, Robert J. ; Cocker, David R. ; Flagan, Richard C. ; Seinfeld, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-d682782d4bbfa0fe75c8f248f633609d7ddb2137c2bb5a3d0d268a20303cb9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Particles and aerosols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffin, Robert J.</creatorcontrib><creatorcontrib>Cocker, David R.</creatorcontrib><creatorcontrib>Flagan, Richard C.</creatorcontrib><creatorcontrib>Seinfeld, John H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, Robert J.</au><au>Cocker, David R.</au><au>Flagan, Richard C.</au><au>Seinfeld, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic aerosol formation from the oxidation of biogenic hydrocarbons</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>1999-02-20</date><risdate>1999</risdate><volume>104</volume><issue>D3</issue><spage>3555</spage><epage>3567</epage><pages>3555-3567</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol‐forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for these types of compounds. Because oxidation products partition between the gas and aerosol phases, the aerosol yields of the parent biogenic hydrocarbons depend on the concentration of organic aerosol into which these products can be absorbed. For organic mass concentrations between 5 and 40 μg m−3, mass‐based yields in photooxidation experiments range from 17 to 67% for sesquiterpenes, from 2 to 23% for cyclic diolefins, from 2 to 15% for bicyclic olefins, and from 2 to 6% for the acyclic triolefin ocimene. In these photooxidation experiments, hydroxyl and nitrate radicals and ozone can contribute to consumption of the parent hydrocarbon. For bicyclic olefins (α‐pinene, β‐pinene, Δ3‐carene, and sabinene), experiments were also carried out at daytime temperatures in a dark system in the presence of ozone or nitrate radicals alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic mass concentration, when compared to full, sunlight‐driven photooxidation. Nitrate radical experiments exhibit extremely high conversion to aerosol for β‐pinene, sabinene, and Δ3‐carene. The relative importance of aerosol formation from each type of reaction for bicyclic olefin photooxidation is elucidated.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1998JD100049</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 1999-02, Vol.104 (D3), p.3555-3567
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_30298952
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Particles and aerosols
title Organic aerosol formation from the oxidation of biogenic hydrocarbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20aerosol%20formation%20from%20the%20oxidation%20of%20biogenic%20hydrocarbons&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Griffin,%20Robert%20J.&rft.date=1999-02-20&rft.volume=104&rft.issue=D3&rft.spage=3555&rft.epage=3567&rft.pages=3555-3567&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/1998JD100049&rft_dat=%3Cproquest_cross%3E18103775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18103775&rft_id=info:pmid/&rfr_iscdi=true