Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment

The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (14), p.18099-18111
Hauptverfasser: Krajňák, Tomáš, Stará, Veronika, Procházka, Pavel, Planer, Jakub, Skála, Tomáš, Blatnik, Matthias, Čechal, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18111
container_issue 14
container_start_page 18099
container_title ACS applied materials & interfaces
container_volume 16
creator Krajňák, Tomáš
Stará, Veronika
Procházka, Pavel
Planer, Jakub
Skála, Tomáš
Blatnik, Matthias
Čechal, Jan
description The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris­(4-carboxyphenyl)­benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.
doi_str_mv 10.1021/acsami.3c18697
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3022570726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153172850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-61349a538ff9c74402a52523ccd8760e1ff510dceeae23e142634d8b1af691913</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK1ePcoeRUjdz2RzLLV-QKFg9eIlbDeTkpLs1t2k0n9vJLU38TQD88w7w4PQNSVjShi91ybouhxzQ1WcJidoSFMhIsUkOz32QgzQRQgbQmLOiDxHA66kpDxVQ_Tx6lZtaPBDuXWV9niu9-ADXkHzBWDxwq-1LQ1eQl0aZ_PWNK4ba5vjZVntwOPCeTyz4Nf7aA47qPCkKte2BttcorNCVwGuDnWE3h9nb9PnaL54eplO5pHmUjVRTLlIteSqKFKTCEGYlt373JhcJTEBWhSSktwAaGAcqGAxF7laUV3EKU0pH6HbPnfr3WcLocnqMhioKm3BtSHjVHKaMCXJ_yhhTCYk6U6M0LhHjXcheCiyrS9r7fcZJdmP-qxXnx3Udws3h-x2VUN-xH9dd8BdD3SL2ca13nZW_kr7BiG8jdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3022570726</pqid></control><display><type>article</type><title>Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment</title><source>ACS Publications</source><creator>Krajňák, Tomáš ; Stará, Veronika ; Procházka, Pavel ; Planer, Jakub ; Skála, Tomáš ; Blatnik, Matthias ; Čechal, Jan</creator><creatorcontrib>Krajňák, Tomáš ; Stará, Veronika ; Procházka, Pavel ; Planer, Jakub ; Skála, Tomáš ; Blatnik, Matthias ; Čechal, Jan</creatorcontrib><description>The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris­(4-carboxyphenyl)­benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c18697</identifier><identifier>PMID: 38551398</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adhesion ; density functional theory ; electrodes ; electron microscopy ; electronics ; energy ; semiconductors ; silver ; Surfaces, Interfaces, and Applications ; X-ray photoelectron spectroscopy</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (14), p.18099-18111</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a358t-61349a538ff9c74402a52523ccd8760e1ff510dceeae23e142634d8b1af691913</cites><orcidid>0000-0002-4727-4776 ; 0000-0003-2909-9422 ; 0000-0003-4745-8441 ; 0000-0001-6896-7232 ; 0000-0003-0920-3608 ; 0000-0003-4818-4366 ; 0000-0001-5448-8580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c18697$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c18697$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38551398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajňák, Tomáš</creatorcontrib><creatorcontrib>Stará, Veronika</creatorcontrib><creatorcontrib>Procházka, Pavel</creatorcontrib><creatorcontrib>Planer, Jakub</creatorcontrib><creatorcontrib>Skála, Tomáš</creatorcontrib><creatorcontrib>Blatnik, Matthias</creatorcontrib><creatorcontrib>Čechal, Jan</creatorcontrib><title>Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris­(4-carboxyphenyl)­benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.</description><subject>adhesion</subject><subject>density functional theory</subject><subject>electrodes</subject><subject>electron microscopy</subject><subject>electronics</subject><subject>energy</subject><subject>semiconductors</subject><subject>silver</subject><subject>Surfaces, Interfaces, and Applications</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK1ePcoeRUjdz2RzLLV-QKFg9eIlbDeTkpLs1t2k0n9vJLU38TQD88w7w4PQNSVjShi91ybouhxzQ1WcJidoSFMhIsUkOz32QgzQRQgbQmLOiDxHA66kpDxVQ_Tx6lZtaPBDuXWV9niu9-ADXkHzBWDxwq-1LQ1eQl0aZ_PWNK4ba5vjZVntwOPCeTyz4Nf7aA47qPCkKte2BttcorNCVwGuDnWE3h9nb9PnaL54eplO5pHmUjVRTLlIteSqKFKTCEGYlt373JhcJTEBWhSSktwAaGAcqGAxF7laUV3EKU0pH6HbPnfr3WcLocnqMhioKm3BtSHjVHKaMCXJ_yhhTCYk6U6M0LhHjXcheCiyrS9r7fcZJdmP-qxXnx3Udws3h-x2VUN-xH9dd8BdD3SL2ca13nZW_kr7BiG8jdA</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Krajňák, Tomáš</creator><creator>Stará, Veronika</creator><creator>Procházka, Pavel</creator><creator>Planer, Jakub</creator><creator>Skála, Tomáš</creator><creator>Blatnik, Matthias</creator><creator>Čechal, Jan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4727-4776</orcidid><orcidid>https://orcid.org/0000-0003-2909-9422</orcidid><orcidid>https://orcid.org/0000-0003-4745-8441</orcidid><orcidid>https://orcid.org/0000-0001-6896-7232</orcidid><orcidid>https://orcid.org/0000-0003-0920-3608</orcidid><orcidid>https://orcid.org/0000-0003-4818-4366</orcidid><orcidid>https://orcid.org/0000-0001-5448-8580</orcidid></search><sort><creationdate>20240410</creationdate><title>Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment</title><author>Krajňák, Tomáš ; Stará, Veronika ; Procházka, Pavel ; Planer, Jakub ; Skála, Tomáš ; Blatnik, Matthias ; Čechal, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-61349a538ff9c74402a52523ccd8760e1ff510dceeae23e142634d8b1af691913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesion</topic><topic>density functional theory</topic><topic>electrodes</topic><topic>electron microscopy</topic><topic>electronics</topic><topic>energy</topic><topic>semiconductors</topic><topic>silver</topic><topic>Surfaces, Interfaces, and Applications</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajňák, Tomáš</creatorcontrib><creatorcontrib>Stará, Veronika</creatorcontrib><creatorcontrib>Procházka, Pavel</creatorcontrib><creatorcontrib>Planer, Jakub</creatorcontrib><creatorcontrib>Skála, Tomáš</creatorcontrib><creatorcontrib>Blatnik, Matthias</creatorcontrib><creatorcontrib>Čechal, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajňák, Tomáš</au><au>Stará, Veronika</au><au>Procházka, Pavel</au><au>Planer, Jakub</au><au>Skála, Tomáš</au><au>Blatnik, Matthias</au><au>Čechal, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-10</date><risdate>2024</risdate><volume>16</volume><issue>14</issue><spage>18099</spage><epage>18111</epage><pages>18099-18111</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris­(4-carboxyphenyl)­benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38551398</pmid><doi>10.1021/acsami.3c18697</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4727-4776</orcidid><orcidid>https://orcid.org/0000-0003-2909-9422</orcidid><orcidid>https://orcid.org/0000-0003-4745-8441</orcidid><orcidid>https://orcid.org/0000-0001-6896-7232</orcidid><orcidid>https://orcid.org/0000-0003-0920-3608</orcidid><orcidid>https://orcid.org/0000-0003-4818-4366</orcidid><orcidid>https://orcid.org/0000-0001-5448-8580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (14), p.18099-18111
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3022570726
source ACS Publications
subjects adhesion
density functional theory
electrodes
electron microscopy
electronics
energy
semiconductors
silver
Surfaces, Interfaces, and Applications
X-ray photoelectron spectroscopy
title Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Dipolar%20Layers%20between%20Organic%20Semiconductors%20and%20Silver%20for%20Energy-Level%20Alignment&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Krajn%CC%8Ca%CC%81k,%20Toma%CC%81s%CC%8C&rft.date=2024-04-10&rft.volume=16&rft.issue=14&rft.spage=18099&rft.epage=18111&rft.pages=18099-18111&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c18697&rft_dat=%3Cproquest_cross%3E3153172850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3022570726&rft_id=info:pmid/38551398&rfr_iscdi=true