Liraglutide attenuates angiotensin II-induced aortic dissection and aortic aneurysm via inhibiting M1 macrophage polarization in APOE -/- mice
[Display omitted] Aortic Aneurysm and Dissection (AAD) are severe cardiovascular conditions with potentially lethal consequences such as aortic rupture. Existing studies suggest that liraglutide, a long-acting glucagon-like peptide receptor (GLP-1R) agonist, offers protective benefits across various...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2024-05, Vol.223, p.116170, Article 116170 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Aortic Aneurysm and Dissection (AAD) are severe cardiovascular conditions with potentially lethal consequences such as aortic rupture. Existing studies suggest that liraglutide, a long-acting glucagon-like peptide receptor (GLP-1R) agonist, offers protective benefits across various cardiovascular diseases. However, the efficacy of liraglutide in mitigating AAD development is yet to be definitively elucidated.
Ang II (Angiotension II) infusion of APOE-/- mouse model with intraperitoneal injection of liraglutide (200 μg/kg) to study the role of GLP-1R in AAD formation. Bone Marrow Derived Macrophages (BMDM) and Raw264.7 were incubated with LPS, liraglutide, exendin 9–39 or LY294002 alone or in combination. SMC phenotype switching was examined in a macrophage and vascular smooth muscle cell (VSMC) co-culture system. An array of analytical methods, including Western Blot, Immunofluorescence Staining, Enzyme-LinkedImmunosorbent Assay, Real-Time Quantitative Polymerase Chain Reaction, RNA-seq, and so on were employed.
Our investigation revealed a significant increase in M1 macrophage polarization and GLP-1R expression in aortas of AD patients and Ang II-induced AAD APOE-/- mice. Administering liraglutide in APOE-/- mice notably reduced Ang II-induced AAD incidence and mortality. It was found that liraglutide inhibits M1 macrophage polarization primarily via GLP-1R activation, and subsequently modulates vascular smooth muscle cell phenotypic switching was the primary mechanism. RNA-Seq and subsequent KEGG enrichment analysis identified CXCL3, regulated by the PI3K/AKT signaling pathway, as a key element in liraglutide’s modulation of M1 macrophage polarization.
Our study found liraglutide exhibits protective effects against AAD by modulating M1 macrophage polarization, suppressing CXCL3 expression through the PI3K/AKT signaling pathway. This makes it a promising therapeutic target for AAD, offering a new avenue in AAD management. |
---|---|
ISSN: | 0006-2952 1873-2968 1873-2968 |
DOI: | 10.1016/j.bcp.2024.116170 |