Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data
Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptio...
Gespeichert in:
Veröffentlicht in: | Doklady. Biochemistry and biophysics 2024-06, Vol.516 (1), p.98-106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 98 |
container_title | Doklady. Biochemistry and biophysics |
container_volume | 516 |
creator | Solovev, Ya. V. Evpak, A. S. Kudriaeva, A. A. Gabibov, A. G. Belogurov, A. A. |
description | Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations. |
doi_str_mv | 10.1134/S1607672924700790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3014004201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060145615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-23ecaffa452420e92afcfe1aa3c9596303cd968bc6807920cd7a38210667b02f3</originalsourceid><addsrcrecordid>eNp1kVtP4zAQhS3EivsP4AVZ4oWXsGM7cZLHqlyl7q60lOdo6trFyHGKnSCVX4-75SIt4sn2mW_OjHUIOWZwzpjIf94xCaUsec3zEqCsYYvsJanKBNRs-9-9zNb1XbIf4yMABy6KHbIrqkLUwGCPxMtndAP2tvO0M3TsrLcKnVvRO7vw1qSH72lr__4eRTrRz9rR2Yr-QvVgvU4CBm_9go6Wy9AlUUd631tnX9bitOvR0WlAH1Wwy75rNb3AHg_JD4Mu6qO384DcX11OxzfZ5M_17Xg0yZTgeZ9xoRUag3nBcw665miU0QxRqLqopQCh5rWsZkpW6e8c1LxEUXEGUpYz4EYckLONb9rtadCxb1oblXYOve6G2AhgOUDyZgk9_Q997Ibg03aJkokrJCsSxTaUCl2MQZtmGWyLYdUwaNaJNF8SST0nb87DrNXzj473CBLAN0BMJb_Q4XP0966vE8-U4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060145615</pqid></control><display><type>article</type><title>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Solovev, Ya. V. ; Evpak, A. S. ; Kudriaeva, A. A. ; Gabibov, A. G. ; Belogurov, A. A.</creator><creatorcontrib>Solovev, Ya. V. ; Evpak, A. S. ; Kudriaeva, A. A. ; Gabibov, A. G. ; Belogurov, A. A.</creatorcontrib><description>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</description><identifier>ISSN: 1607-6729</identifier><identifier>EISSN: 1608-3091</identifier><identifier>DOI: 10.1134/S1607672924700790</identifier><identifier>PMID: 38539010</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Biochemistry ; Bioinformatics ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Cancer ; Clinical significance ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Humans ; Life Sciences ; Machine Learning ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Molecular Biology ; Neoplasms - genetics ; Neoplasms - metabolism ; Nucleoli ; Post-transcription ; Transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>Doklady. Biochemistry and biophysics, 2024-06, Vol.516 (1), p.98-106</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1607-6729, Doklady Biochemistry and Biophysics, 2024, Vol. 516, pp. 98–106. © Pleiades Publishing, Ltd., 2024. ISSN 1607-6729, Doklady Biochemistry and Biophysics, 2024. © Pleiades Publishing, Ltd., 2024.</rights><rights>2024. Pleiades Publishing, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-23ecaffa452420e92afcfe1aa3c9596303cd968bc6807920cd7a38210667b02f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1607672924700790$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1607672924700790$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38539010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Solovev, Ya. V.</creatorcontrib><creatorcontrib>Evpak, A. S.</creatorcontrib><creatorcontrib>Kudriaeva, A. A.</creatorcontrib><creatorcontrib>Gabibov, A. G.</creatorcontrib><creatorcontrib>Belogurov, A. A.</creatorcontrib><title>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</title><title>Doklady. Biochemistry and biophysics</title><addtitle>Dokl Biochem Biophys</addtitle><addtitle>Dokl Biochem Biophys</addtitle><description>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</description><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Cancer</subject><subject>Clinical significance</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Molecular Biology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Nucleoli</subject><subject>Post-transcription</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1607-6729</issn><issn>1608-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVtP4zAQhS3EivsP4AVZ4oWXsGM7cZLHqlyl7q60lOdo6trFyHGKnSCVX4-75SIt4sn2mW_OjHUIOWZwzpjIf94xCaUsec3zEqCsYYvsJanKBNRs-9-9zNb1XbIf4yMABy6KHbIrqkLUwGCPxMtndAP2tvO0M3TsrLcKnVvRO7vw1qSH72lr__4eRTrRz9rR2Yr-QvVgvU4CBm_9go6Wy9AlUUd631tnX9bitOvR0WlAH1Wwy75rNb3AHg_JD4Mu6qO384DcX11OxzfZ5M_17Xg0yZTgeZ9xoRUag3nBcw665miU0QxRqLqopQCh5rWsZkpW6e8c1LxEUXEGUpYz4EYckLONb9rtadCxb1oblXYOve6G2AhgOUDyZgk9_Q997Ibg03aJkokrJCsSxTaUCl2MQZtmGWyLYdUwaNaJNF8SST0nb87DrNXzj473CBLAN0BMJb_Q4XP0966vE8-U4Q</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Solovev, Ya. V.</creator><creator>Evpak, A. S.</creator><creator>Kudriaeva, A. A.</creator><creator>Gabibov, A. G.</creator><creator>Belogurov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</title><author>Solovev, Ya. V. ; Evpak, A. S. ; Kudriaeva, A. A. ; Gabibov, A. G. ; Belogurov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-23ecaffa452420e92afcfe1aa3c9596303cd968bc6807920cd7a38210667b02f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Cancer</topic><topic>Clinical significance</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Molecular Biology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Nucleoli</topic><topic>Post-transcription</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovev, Ya. V.</creatorcontrib><creatorcontrib>Evpak, A. S.</creatorcontrib><creatorcontrib>Kudriaeva, A. A.</creatorcontrib><creatorcontrib>Gabibov, A. G.</creatorcontrib><creatorcontrib>Belogurov, A. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Doklady. Biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovev, Ya. V.</au><au>Evpak, A. S.</au><au>Kudriaeva, A. A.</au><au>Gabibov, A. G.</au><au>Belogurov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</atitle><jtitle>Doklady. Biochemistry and biophysics</jtitle><stitle>Dokl Biochem Biophys</stitle><addtitle>Dokl Biochem Biophys</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>516</volume><issue>1</issue><spage>98</spage><epage>106</epage><pages>98-106</pages><issn>1607-6729</issn><eissn>1608-3091</eissn><abstract>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>38539010</pmid><doi>10.1134/S1607672924700790</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1607-6729 |
ispartof | Doklady. Biochemistry and biophysics, 2024-06, Vol.516 (1), p.98-106 |
issn | 1607-6729 1608-3091 |
language | eng |
recordid | cdi_proquest_miscellaneous_3014004201 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biochemistry Bioinformatics Biological and Medical Physics Biomedical and Life Sciences Biophysics Cancer Clinical significance Gene Expression Profiling Gene Expression Regulation, Neoplastic Gene regulation Humans Life Sciences Machine Learning MicroRNAs MicroRNAs - genetics miRNA Molecular Biology Neoplasms - genetics Neoplasms - metabolism Nucleoli Post-transcription Transcriptome Transcriptomes Transcriptomics |
title | Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Clinically%20Significant%20miRNAs%20Level%20by%20Machine%20Learning%20Approaches%20Utilizing%20Total%20Transcriptome%20Data&rft.jtitle=Doklady.%20Biochemistry%20and%20biophysics&rft.au=Solovev,%20Ya.%20V.&rft.date=2024-06-01&rft.volume=516&rft.issue=1&rft.spage=98&rft.epage=106&rft.pages=98-106&rft.issn=1607-6729&rft.eissn=1608-3091&rft_id=info:doi/10.1134/S1607672924700790&rft_dat=%3Cproquest_cross%3E3060145615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060145615&rft_id=info:pmid/38539010&rfr_iscdi=true |