Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data

Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Biochemistry and biophysics 2024-06, Vol.516 (1), p.98-106
Hauptverfasser: Solovev, Ya. V., Evpak, A. S., Kudriaeva, A. A., Gabibov, A. G., Belogurov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 98
container_title Doklady. Biochemistry and biophysics
container_volume 516
creator Solovev, Ya. V.
Evpak, A. S.
Kudriaeva, A. A.
Gabibov, A. G.
Belogurov, A. A.
description Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.
doi_str_mv 10.1134/S1607672924700790
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3014004201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060145615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-23ecaffa452420e92afcfe1aa3c9596303cd968bc6807920cd7a38210667b02f3</originalsourceid><addsrcrecordid>eNp1kVtP4zAQhS3EivsP4AVZ4oWXsGM7cZLHqlyl7q60lOdo6trFyHGKnSCVX4-75SIt4sn2mW_OjHUIOWZwzpjIf94xCaUsec3zEqCsYYvsJanKBNRs-9-9zNb1XbIf4yMABy6KHbIrqkLUwGCPxMtndAP2tvO0M3TsrLcKnVvRO7vw1qSH72lr__4eRTrRz9rR2Yr-QvVgvU4CBm_9go6Wy9AlUUd631tnX9bitOvR0WlAH1Wwy75rNb3AHg_JD4Mu6qO384DcX11OxzfZ5M_17Xg0yZTgeZ9xoRUag3nBcw665miU0QxRqLqopQCh5rWsZkpW6e8c1LxEUXEGUpYz4EYckLONb9rtadCxb1oblXYOve6G2AhgOUDyZgk9_Q997Ibg03aJkokrJCsSxTaUCl2MQZtmGWyLYdUwaNaJNF8SST0nb87DrNXzj473CBLAN0BMJb_Q4XP0966vE8-U4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060145615</pqid></control><display><type>article</type><title>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Solovev, Ya. V. ; Evpak, A. S. ; Kudriaeva, A. A. ; Gabibov, A. G. ; Belogurov, A. A.</creator><creatorcontrib>Solovev, Ya. V. ; Evpak, A. S. ; Kudriaeva, A. A. ; Gabibov, A. G. ; Belogurov, A. A.</creatorcontrib><description>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</description><identifier>ISSN: 1607-6729</identifier><identifier>EISSN: 1608-3091</identifier><identifier>DOI: 10.1134/S1607672924700790</identifier><identifier>PMID: 38539010</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Biochemistry ; Bioinformatics ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Cancer ; Clinical significance ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Humans ; Life Sciences ; Machine Learning ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Molecular Biology ; Neoplasms - genetics ; Neoplasms - metabolism ; Nucleoli ; Post-transcription ; Transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>Doklady. Biochemistry and biophysics, 2024-06, Vol.516 (1), p.98-106</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1607-6729, Doklady Biochemistry and Biophysics, 2024, Vol. 516, pp. 98–106. © Pleiades Publishing, Ltd., 2024. ISSN 1607-6729, Doklady Biochemistry and Biophysics, 2024. © Pleiades Publishing, Ltd., 2024.</rights><rights>2024. Pleiades Publishing, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-23ecaffa452420e92afcfe1aa3c9596303cd968bc6807920cd7a38210667b02f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1607672924700790$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1607672924700790$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38539010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Solovev, Ya. V.</creatorcontrib><creatorcontrib>Evpak, A. S.</creatorcontrib><creatorcontrib>Kudriaeva, A. A.</creatorcontrib><creatorcontrib>Gabibov, A. G.</creatorcontrib><creatorcontrib>Belogurov, A. A.</creatorcontrib><title>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</title><title>Doklady. Biochemistry and biophysics</title><addtitle>Dokl Biochem Biophys</addtitle><addtitle>Dokl Biochem Biophys</addtitle><description>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</description><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Cancer</subject><subject>Clinical significance</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Molecular Biology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Nucleoli</subject><subject>Post-transcription</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1607-6729</issn><issn>1608-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVtP4zAQhS3EivsP4AVZ4oWXsGM7cZLHqlyl7q60lOdo6trFyHGKnSCVX4-75SIt4sn2mW_OjHUIOWZwzpjIf94xCaUsec3zEqCsYYvsJanKBNRs-9-9zNb1XbIf4yMABy6KHbIrqkLUwGCPxMtndAP2tvO0M3TsrLcKnVvRO7vw1qSH72lr__4eRTrRz9rR2Yr-QvVgvU4CBm_9go6Wy9AlUUd631tnX9bitOvR0WlAH1Wwy75rNb3AHg_JD4Mu6qO384DcX11OxzfZ5M_17Xg0yZTgeZ9xoRUag3nBcw665miU0QxRqLqopQCh5rWsZkpW6e8c1LxEUXEGUpYz4EYckLONb9rtadCxb1oblXYOve6G2AhgOUDyZgk9_Q997Ibg03aJkokrJCsSxTaUCl2MQZtmGWyLYdUwaNaJNF8SST0nb87DrNXzj473CBLAN0BMJb_Q4XP0966vE8-U4Q</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Solovev, Ya. V.</creator><creator>Evpak, A. S.</creator><creator>Kudriaeva, A. A.</creator><creator>Gabibov, A. G.</creator><creator>Belogurov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</title><author>Solovev, Ya. V. ; Evpak, A. S. ; Kudriaeva, A. A. ; Gabibov, A. G. ; Belogurov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-23ecaffa452420e92afcfe1aa3c9596303cd968bc6807920cd7a38210667b02f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Cancer</topic><topic>Clinical significance</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Molecular Biology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Nucleoli</topic><topic>Post-transcription</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solovev, Ya. V.</creatorcontrib><creatorcontrib>Evpak, A. S.</creatorcontrib><creatorcontrib>Kudriaeva, A. A.</creatorcontrib><creatorcontrib>Gabibov, A. G.</creatorcontrib><creatorcontrib>Belogurov, A. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Doklady. Biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solovev, Ya. V.</au><au>Evpak, A. S.</au><au>Kudriaeva, A. A.</au><au>Gabibov, A. G.</au><au>Belogurov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data</atitle><jtitle>Doklady. Biochemistry and biophysics</jtitle><stitle>Dokl Biochem Biophys</stitle><addtitle>Dokl Biochem Biophys</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>516</volume><issue>1</issue><spage>98</spage><epage>106</epage><pages>98-106</pages><issn>1607-6729</issn><eissn>1608-3091</eissn><abstract>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>38539010</pmid><doi>10.1134/S1607672924700790</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1607-6729
ispartof Doklady. Biochemistry and biophysics, 2024-06, Vol.516 (1), p.98-106
issn 1607-6729
1608-3091
language eng
recordid cdi_proquest_miscellaneous_3014004201
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biochemistry
Bioinformatics
Biological and Medical Physics
Biomedical and Life Sciences
Biophysics
Cancer
Clinical significance
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene regulation
Humans
Life Sciences
Machine Learning
MicroRNAs
MicroRNAs - genetics
miRNA
Molecular Biology
Neoplasms - genetics
Neoplasms - metabolism
Nucleoli
Post-transcription
Transcriptome
Transcriptomes
Transcriptomics
title Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Clinically%20Significant%20miRNAs%20Level%20by%20Machine%20Learning%20Approaches%20Utilizing%20Total%20Transcriptome%20Data&rft.jtitle=Doklady.%20Biochemistry%20and%20biophysics&rft.au=Solovev,%20Ya.%20V.&rft.date=2024-06-01&rft.volume=516&rft.issue=1&rft.spage=98&rft.epage=106&rft.pages=98-106&rft.issn=1607-6729&rft.eissn=1608-3091&rft_id=info:doi/10.1134/S1607672924700790&rft_dat=%3Cproquest_cross%3E3060145615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060145615&rft_id=info:pmid/38539010&rfr_iscdi=true