Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers
While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a g...
Gespeichert in:
Veröffentlicht in: | Polymer international 2007-11, Vol.56 (11), p.1349-1360 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1360 |
---|---|
container_issue | 11 |
container_start_page | 1349 |
container_title | Polymer international |
container_volume | 56 |
creator | Sell, Scott Barnes, Catherine Smith, Matthew McClure, Michael Madurantakam, Parthasarathy Grant, Joshua McManus, Michael Bowlin, Gary |
description | While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a growing number of researchers in the tissue engineering community have embraced electrospinning as a polymer processing technique that effectively and routinely produces non‐woven structures of nanoscale fibers (sizes of 80 nm to 1.5 µm). These nanofibers are of physiological significance as they closely resemble the structure and size scale of the native ECM (fiber diameters of 50 to 500 nm). Attempts to replicate the many roles of native ECM have led to the electrospinning of a wide array of polymers, both synthetic (poly(glycolic acid), poly(lactic acid), polydioxanone, polycaprolactone, etc.) and natural (collagen, fibrinogen, elastin, etc.) in origin, for a multitude of different tissue applications. With various compositions, fiber dimensions and fiber orientations, the biological, chemical and mechanical properties of the electrospun materials can be tailored. In this review we highlight the role of electrospinning in the engineering of different tissues and applications (skin/wound healing, cartilage, bone, vascular tissue, urological tissues, nerve, and ligament), and discuss its potential role in future work. Copyright © 2007 Society of Chemical Industry |
doi_str_mv | 10.1002/pi.2344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30131402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30131402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3964-1b29f554c658e0a5f094a185563af29aea020cdd8aa39f484f6742d368a1ffa13</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKwf-Bdy0oNEZ7O7SdabSK2FogUVwcsyTWbLar7cTbT-e1sq3jzN5ZmXmZexEw4XHCC57NxFIqTcYSMOOouBJ-kuG4FWOs45iH12EMIbAORa6xF7Ha96jwVV1VChj2rsvVtFnpbUkMeeyquodyEMFFGzdA2Rd80y-nQYUUVF79vQDU20cG3taupdETXYtNYtyIcjtmexCnT8Ow_Z8-346eYunj1MpjfXs7gQOpUxXyTaKiWLVOUEqCxoiTxXKhVoE42EkEBRljmi0Fbm0qaZTEqR5sitRS4O2ek2t_Ptx0ChN7ULm4-woXYIRgAXXEKyhmdbWKzPDp6s6byr0X8bDmbTnemc2XS3ludb-eUq-v6Pmfn0V8db7UJPqz-N_t2kmciUebmfmBd-9zR_VI_rzR-Hcn_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30131402</pqid></control><display><type>article</type><title>Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sell, Scott ; Barnes, Catherine ; Smith, Matthew ; McClure, Michael ; Madurantakam, Parthasarathy ; Grant, Joshua ; McManus, Michael ; Bowlin, Gary</creator><creatorcontrib>Sell, Scott ; Barnes, Catherine ; Smith, Matthew ; McClure, Michael ; Madurantakam, Parthasarathy ; Grant, Joshua ; McManus, Michael ; Bowlin, Gary</creatorcontrib><description>While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a growing number of researchers in the tissue engineering community have embraced electrospinning as a polymer processing technique that effectively and routinely produces non‐woven structures of nanoscale fibers (sizes of 80 nm to 1.5 µm). These nanofibers are of physiological significance as they closely resemble the structure and size scale of the native ECM (fiber diameters of 50 to 500 nm). Attempts to replicate the many roles of native ECM have led to the electrospinning of a wide array of polymers, both synthetic (poly(glycolic acid), poly(lactic acid), polydioxanone, polycaprolactone, etc.) and natural (collagen, fibrinogen, elastin, etc.) in origin, for a multitude of different tissue applications. With various compositions, fiber dimensions and fiber orientations, the biological, chemical and mechanical properties of the electrospun materials can be tailored. In this review we highlight the role of electrospinning in the engineering of different tissues and applications (skin/wound healing, cartilage, bone, vascular tissue, urological tissues, nerve, and ligament), and discuss its potential role in future work. Copyright © 2007 Society of Chemical Industry</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.2344</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>electrospinning ; extracellular matrix analogue ; scaffold ; tissue engineering</subject><ispartof>Polymer international, 2007-11, Vol.56 (11), p.1349-1360</ispartof><rights>Copyright © 2007 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3964-1b29f554c658e0a5f094a185563af29aea020cdd8aa39f484f6742d368a1ffa13</citedby><cites>FETCH-LOGICAL-c3964-1b29f554c658e0a5f094a185563af29aea020cdd8aa39f484f6742d368a1ffa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.2344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.2344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sell, Scott</creatorcontrib><creatorcontrib>Barnes, Catherine</creatorcontrib><creatorcontrib>Smith, Matthew</creatorcontrib><creatorcontrib>McClure, Michael</creatorcontrib><creatorcontrib>Madurantakam, Parthasarathy</creatorcontrib><creatorcontrib>Grant, Joshua</creatorcontrib><creatorcontrib>McManus, Michael</creatorcontrib><creatorcontrib>Bowlin, Gary</creatorcontrib><title>Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers</title><title>Polymer international</title><addtitle>Polym. Int</addtitle><description>While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a growing number of researchers in the tissue engineering community have embraced electrospinning as a polymer processing technique that effectively and routinely produces non‐woven structures of nanoscale fibers (sizes of 80 nm to 1.5 µm). These nanofibers are of physiological significance as they closely resemble the structure and size scale of the native ECM (fiber diameters of 50 to 500 nm). Attempts to replicate the many roles of native ECM have led to the electrospinning of a wide array of polymers, both synthetic (poly(glycolic acid), poly(lactic acid), polydioxanone, polycaprolactone, etc.) and natural (collagen, fibrinogen, elastin, etc.) in origin, for a multitude of different tissue applications. With various compositions, fiber dimensions and fiber orientations, the biological, chemical and mechanical properties of the electrospun materials can be tailored. In this review we highlight the role of electrospinning in the engineering of different tissues and applications (skin/wound healing, cartilage, bone, vascular tissue, urological tissues, nerve, and ligament), and discuss its potential role in future work. Copyright © 2007 Society of Chemical Industry</description><subject>electrospinning</subject><subject>extracellular matrix analogue</subject><subject>scaffold</subject><subject>tissue engineering</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKwf-Bdy0oNEZ7O7SdabSK2FogUVwcsyTWbLar7cTbT-e1sq3jzN5ZmXmZexEw4XHCC57NxFIqTcYSMOOouBJ-kuG4FWOs45iH12EMIbAORa6xF7Ha96jwVV1VChj2rsvVtFnpbUkMeeyquodyEMFFGzdA2Rd80y-nQYUUVF79vQDU20cG3taupdETXYtNYtyIcjtmexCnT8Ow_Z8-346eYunj1MpjfXs7gQOpUxXyTaKiWLVOUEqCxoiTxXKhVoE42EkEBRljmi0Fbm0qaZTEqR5sitRS4O2ek2t_Ptx0ChN7ULm4-woXYIRgAXXEKyhmdbWKzPDp6s6byr0X8bDmbTnemc2XS3ludb-eUq-v6Pmfn0V8db7UJPqz-N_t2kmciUebmfmBd-9zR_VI_rzR-Hcn_Y</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Sell, Scott</creator><creator>Barnes, Catherine</creator><creator>Smith, Matthew</creator><creator>McClure, Michael</creator><creator>Madurantakam, Parthasarathy</creator><creator>Grant, Joshua</creator><creator>McManus, Michael</creator><creator>Bowlin, Gary</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>200711</creationdate><title>Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers</title><author>Sell, Scott ; Barnes, Catherine ; Smith, Matthew ; McClure, Michael ; Madurantakam, Parthasarathy ; Grant, Joshua ; McManus, Michael ; Bowlin, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3964-1b29f554c658e0a5f094a185563af29aea020cdd8aa39f484f6742d368a1ffa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>electrospinning</topic><topic>extracellular matrix analogue</topic><topic>scaffold</topic><topic>tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sell, Scott</creatorcontrib><creatorcontrib>Barnes, Catherine</creatorcontrib><creatorcontrib>Smith, Matthew</creatorcontrib><creatorcontrib>McClure, Michael</creatorcontrib><creatorcontrib>Madurantakam, Parthasarathy</creatorcontrib><creatorcontrib>Grant, Joshua</creatorcontrib><creatorcontrib>McManus, Michael</creatorcontrib><creatorcontrib>Bowlin, Gary</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sell, Scott</au><au>Barnes, Catherine</au><au>Smith, Matthew</au><au>McClure, Michael</au><au>Madurantakam, Parthasarathy</au><au>Grant, Joshua</au><au>McManus, Michael</au><au>Bowlin, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers</atitle><jtitle>Polymer international</jtitle><addtitle>Polym. Int</addtitle><date>2007-11</date><risdate>2007</risdate><volume>56</volume><issue>11</issue><spage>1349</spage><epage>1360</epage><pages>1349-1360</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a growing number of researchers in the tissue engineering community have embraced electrospinning as a polymer processing technique that effectively and routinely produces non‐woven structures of nanoscale fibers (sizes of 80 nm to 1.5 µm). These nanofibers are of physiological significance as they closely resemble the structure and size scale of the native ECM (fiber diameters of 50 to 500 nm). Attempts to replicate the many roles of native ECM have led to the electrospinning of a wide array of polymers, both synthetic (poly(glycolic acid), poly(lactic acid), polydioxanone, polycaprolactone, etc.) and natural (collagen, fibrinogen, elastin, etc.) in origin, for a multitude of different tissue applications. With various compositions, fiber dimensions and fiber orientations, the biological, chemical and mechanical properties of the electrospun materials can be tailored. In this review we highlight the role of electrospinning in the engineering of different tissues and applications (skin/wound healing, cartilage, bone, vascular tissue, urological tissues, nerve, and ligament), and discuss its potential role in future work. Copyright © 2007 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/pi.2344</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-8103 |
ispartof | Polymer international, 2007-11, Vol.56 (11), p.1349-1360 |
issn | 0959-8103 1097-0126 |
language | eng |
recordid | cdi_proquest_miscellaneous_30131402 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | electrospinning extracellular matrix analogue scaffold tissue engineering |
title | Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20matrix%20regenerated:%20tissue%20engineering%20via%20electrospun%20biomimetic%20nanofibers&rft.jtitle=Polymer%20international&rft.au=Sell,%20Scott&rft.date=2007-11&rft.volume=56&rft.issue=11&rft.spage=1349&rft.epage=1360&rft.pages=1349-1360&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.2344&rft_dat=%3Cproquest_cross%3E30131402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30131402&rft_id=info:pmid/&rfr_iscdi=true |