Origin of metal–insulator transition in the weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths)

For the oxygen-annealed weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths), superconducting transition temperature Tsc decreases steadily from maximum 56K for smaller rare earth Gd3+ (ionic radius r=0.105nm), to 54K for (Eu0.5Gd0.5)3+, 36K for Eu3+, 8K for (Sm0.5Eu0.5)3+, and metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. C, Superconductivity Superconductivity, 2007-09, Vol.460-462 (1), p.503-505
Hauptverfasser: Chang, B.C., Yang, C.Y., Hsu, Y.Y., Ku, H.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 1
container_start_page 503
container_title Physica. C, Superconductivity
container_volume 460-462
creator Chang, B.C.
Yang, C.Y.
Hsu, Y.Y.
Ku, H.C.
description For the oxygen-annealed weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths), superconducting transition temperature Tsc decreases steadily from maximum 56K for smaller rare earth Gd3+ (ionic radius r=0.105nm), to 54K for (Eu0.5Gd0.5)3+, 36K for Eu3+, 8K for (Sm0.5Eu0.5)3+, and metallic but not superconducting for larger Sm3+ (r=0.108nm), with a metal–insulator transition for even larger rare earth ions Nd3+ (r=0.112nm) and Pr3+ (r=0.113nm). Powder X-ray diffraction Rietveld refinement study indicates that the insulating phase is stabilized in the undistorted tetragonal phase (space group P4/mmm) with the larger tetragonal lattice parameter a∼0.390–392nm, which gives a reasonable Ru5+–O bond length of d∼0.197nm. On the other hand, the metallic phase with smaller rare earth ions can be stabilized only in the distorted tetragonal phase (space group P4/mbm), with the smaller a/√2∼0.383–0.385nm but still provide a reasonable Ru–O bond length through RuO6 octahedron rotation. The metal–insulator transition as well as the variation of superconducting Tsc is closely related to oxygen deficiency content δ which control the variation of mobile hole concentration and structural variation in this hole-doped superconductor system.
doi_str_mv 10.1016/j.physc.2007.03.334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30125169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092145340700216X</els_id><sourcerecordid>30125169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-7250d493e0c8891036b53f3504661ae9b9ab6f97df550a246e71ce1d42cd8ffa3</originalsourceid><addsrcrecordid>eNp9kLmOE0EQhlsIJMzCE5B0AoJghr7mCjZA1nJIK1kyELfaPdXrNnOYqh6QM96BN-RJaOOVyKikku-v42PsuRSlFLJ-cyiP-xP5UgnRlEKXWpsHbCXbRhdKGv2QrUSnZGEqbR6zJ0QHkUt2csVwg_EuTnwOfITkht8_f8WJlsGlGXlCN1FMcZ54RtIe-A9wX4sAiPPo7iZI0XNajoB-nvrFnzN0ogQj3y6fUG3Xi9q0_NX2Gh0CB4dpT6-fskfBDQTP7vsV-_Lu5vP6Q3G7ef9x_fa28Lo2qWhUJXrTaRC-bTspdL2rdNCVMHUtHXS7zu3q0DV9qCrhlKmhkR5kb5Tv2xCcvmIvL3OPOH9bgJIdI3kYBjfBvJDVQqpK1l0G9QX0OBMhBHvEODo8WSns2a892L9-7dmvFdpmvzn14n68I--GkF35SP-i-eRGtDpz1xcO8q_fI6AlH2Hy0EcEn2w_x__u-QM5GZQ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30125169</pqid></control><display><type>article</type><title>Origin of metal–insulator transition in the weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chang, B.C. ; Yang, C.Y. ; Hsu, Y.Y. ; Ku, H.C.</creator><creatorcontrib>Chang, B.C. ; Yang, C.Y. ; Hsu, Y.Y. ; Ku, H.C.</creatorcontrib><description>For the oxygen-annealed weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths), superconducting transition temperature Tsc decreases steadily from maximum 56K for smaller rare earth Gd3+ (ionic radius r=0.105nm), to 54K for (Eu0.5Gd0.5)3+, 36K for Eu3+, 8K for (Sm0.5Eu0.5)3+, and metallic but not superconducting for larger Sm3+ (r=0.108nm), with a metal–insulator transition for even larger rare earth ions Nd3+ (r=0.112nm) and Pr3+ (r=0.113nm). Powder X-ray diffraction Rietveld refinement study indicates that the insulating phase is stabilized in the undistorted tetragonal phase (space group P4/mmm) with the larger tetragonal lattice parameter a∼0.390–392nm, which gives a reasonable Ru5+–O bond length of d∼0.197nm. On the other hand, the metallic phase with smaller rare earth ions can be stabilized only in the distorted tetragonal phase (space group P4/mbm), with the smaller a/√2∼0.383–0.385nm but still provide a reasonable Ru–O bond length through RuO6 octahedron rotation. The metal–insulator transition as well as the variation of superconducting Tsc is closely related to oxygen deficiency content δ which control the variation of mobile hole concentration and structural variation in this hole-doped superconductor system.</description><identifier>ISSN: 0921-4534</identifier><identifier>EISSN: 1873-2143</identifier><identifier>DOI: 10.1016/j.physc.2007.03.334</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cuprates superconductors (high tc and insulating parent compounds) ; Electronic structure ; Exact sciences and technology ; Metal–insulator transition ; Other cuprates ; Physics ; Properties of type I and type II superconductors ; Superconductivity ; Weak-ferromagnetic superconductor</subject><ispartof>Physica. C, Superconductivity, 2007-09, Vol.460-462 (1), p.503-505</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-7250d493e0c8891036b53f3504661ae9b9ab6f97df550a246e71ce1d42cd8ffa3</citedby><cites>FETCH-LOGICAL-c364t-7250d493e0c8891036b53f3504661ae9b9ab6f97df550a246e71ce1d42cd8ffa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physc.2007.03.334$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,3554,23939,23940,25149,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19107083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, B.C.</creatorcontrib><creatorcontrib>Yang, C.Y.</creatorcontrib><creatorcontrib>Hsu, Y.Y.</creatorcontrib><creatorcontrib>Ku, H.C.</creatorcontrib><title>Origin of metal–insulator transition in the weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths)</title><title>Physica. C, Superconductivity</title><description>For the oxygen-annealed weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths), superconducting transition temperature Tsc decreases steadily from maximum 56K for smaller rare earth Gd3+ (ionic radius r=0.105nm), to 54K for (Eu0.5Gd0.5)3+, 36K for Eu3+, 8K for (Sm0.5Eu0.5)3+, and metallic but not superconducting for larger Sm3+ (r=0.108nm), with a metal–insulator transition for even larger rare earth ions Nd3+ (r=0.112nm) and Pr3+ (r=0.113nm). Powder X-ray diffraction Rietveld refinement study indicates that the insulating phase is stabilized in the undistorted tetragonal phase (space group P4/mmm) with the larger tetragonal lattice parameter a∼0.390–392nm, which gives a reasonable Ru5+–O bond length of d∼0.197nm. On the other hand, the metallic phase with smaller rare earth ions can be stabilized only in the distorted tetragonal phase (space group P4/mbm), with the smaller a/√2∼0.383–0.385nm but still provide a reasonable Ru–O bond length through RuO6 octahedron rotation. The metal–insulator transition as well as the variation of superconducting Tsc is closely related to oxygen deficiency content δ which control the variation of mobile hole concentration and structural variation in this hole-doped superconductor system.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cuprates superconductors (high tc and insulating parent compounds)</subject><subject>Electronic structure</subject><subject>Exact sciences and technology</subject><subject>Metal–insulator transition</subject><subject>Other cuprates</subject><subject>Physics</subject><subject>Properties of type I and type II superconductors</subject><subject>Superconductivity</subject><subject>Weak-ferromagnetic superconductor</subject><issn>0921-4534</issn><issn>1873-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kLmOE0EQhlsIJMzCE5B0AoJghr7mCjZA1nJIK1kyELfaPdXrNnOYqh6QM96BN-RJaOOVyKikku-v42PsuRSlFLJ-cyiP-xP5UgnRlEKXWpsHbCXbRhdKGv2QrUSnZGEqbR6zJ0QHkUt2csVwg_EuTnwOfITkht8_f8WJlsGlGXlCN1FMcZ54RtIe-A9wX4sAiPPo7iZI0XNajoB-nvrFnzN0ogQj3y6fUG3Xi9q0_NX2Gh0CB4dpT6-fskfBDQTP7vsV-_Lu5vP6Q3G7ef9x_fa28Lo2qWhUJXrTaRC-bTspdL2rdNCVMHUtHXS7zu3q0DV9qCrhlKmhkR5kb5Tv2xCcvmIvL3OPOH9bgJIdI3kYBjfBvJDVQqpK1l0G9QX0OBMhBHvEODo8WSns2a892L9-7dmvFdpmvzn14n68I--GkF35SP-i-eRGtDpz1xcO8q_fI6AlH2Hy0EcEn2w_x__u-QM5GZQ5</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Chang, B.C.</creator><creator>Yang, C.Y.</creator><creator>Hsu, Y.Y.</creator><creator>Ku, H.C.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20070901</creationdate><title>Origin of metal–insulator transition in the weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths)</title><author>Chang, B.C. ; Yang, C.Y. ; Hsu, Y.Y. ; Ku, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-7250d493e0c8891036b53f3504661ae9b9ab6f97df550a246e71ce1d42cd8ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cuprates superconductors (high tc and insulating parent compounds)</topic><topic>Electronic structure</topic><topic>Exact sciences and technology</topic><topic>Metal–insulator transition</topic><topic>Other cuprates</topic><topic>Physics</topic><topic>Properties of type I and type II superconductors</topic><topic>Superconductivity</topic><topic>Weak-ferromagnetic superconductor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, B.C.</creatorcontrib><creatorcontrib>Yang, C.Y.</creatorcontrib><creatorcontrib>Hsu, Y.Y.</creatorcontrib><creatorcontrib>Ku, H.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. C, Superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, B.C.</au><au>Yang, C.Y.</au><au>Hsu, Y.Y.</au><au>Ku, H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of metal–insulator transition in the weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths)</atitle><jtitle>Physica. C, Superconductivity</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>460-462</volume><issue>1</issue><spage>503</spage><epage>505</epage><pages>503-505</pages><issn>0921-4534</issn><eissn>1873-2143</eissn><abstract>For the oxygen-annealed weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths), superconducting transition temperature Tsc decreases steadily from maximum 56K for smaller rare earth Gd3+ (ionic radius r=0.105nm), to 54K for (Eu0.5Gd0.5)3+, 36K for Eu3+, 8K for (Sm0.5Eu0.5)3+, and metallic but not superconducting for larger Sm3+ (r=0.108nm), with a metal–insulator transition for even larger rare earth ions Nd3+ (r=0.112nm) and Pr3+ (r=0.113nm). Powder X-ray diffraction Rietveld refinement study indicates that the insulating phase is stabilized in the undistorted tetragonal phase (space group P4/mmm) with the larger tetragonal lattice parameter a∼0.390–392nm, which gives a reasonable Ru5+–O bond length of d∼0.197nm. On the other hand, the metallic phase with smaller rare earth ions can be stabilized only in the distorted tetragonal phase (space group P4/mbm), with the smaller a/√2∼0.383–0.385nm but still provide a reasonable Ru–O bond length through RuO6 octahedron rotation. The metal–insulator transition as well as the variation of superconducting Tsc is closely related to oxygen deficiency content δ which control the variation of mobile hole concentration and structural variation in this hole-doped superconductor system.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physc.2007.03.334</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4534
ispartof Physica. C, Superconductivity, 2007-09, Vol.460-462 (1), p.503-505
issn 0921-4534
1873-2143
language eng
recordid cdi_proquest_miscellaneous_30125169
source Access via ScienceDirect (Elsevier)
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cuprates superconductors (high tc and insulating parent compounds)
Electronic structure
Exact sciences and technology
Metal–insulator transition
Other cuprates
Physics
Properties of type I and type II superconductors
Superconductivity
Weak-ferromagnetic superconductor
title Origin of metal–insulator transition in the weak-ferromagnetic superconductor system RuSr2RCu2O8 (R=rare earths)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20metal%E2%80%93insulator%20transition%20in%20the%20weak-ferromagnetic%20superconductor%20system%20RuSr2RCu2O8%20(R=rare%20earths)&rft.jtitle=Physica.%20C,%20Superconductivity&rft.au=Chang,%20B.C.&rft.date=2007-09-01&rft.volume=460-462&rft.issue=1&rft.spage=503&rft.epage=505&rft.pages=503-505&rft.issn=0921-4534&rft.eissn=1873-2143&rft_id=info:doi/10.1016/j.physc.2007.03.334&rft_dat=%3Cproquest_cross%3E30125169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30125169&rft_id=info:pmid/&rft_els_id=S092145340700216X&rfr_iscdi=true