Effect of the ratio of maleated polypropylene to organoclay on the structure and properties of TPO-based nanocomposites. Part I: Morphology and mechanical properties

The structure–property relationships of thermoplastic olefin (TPO)-based nanocomposites prepared by melt processing are reported with a main focus on the ratio of maleic anhydride-grafted polypropylene (PP-g-MA) to organoclay. The morphological observations by transmission electron microscopy, atomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2007-09, Vol.48 (20), p.5960-5978
Hauptverfasser: Hoon Kim, Do, Fasulo, Paula D., Rodgers, William R., Paul, D.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure–property relationships of thermoplastic olefin (TPO)-based nanocomposites prepared by melt processing are reported with a main focus on the ratio of maleic anhydride-grafted polypropylene (PP-g-MA) to organoclay. The morphological observations by transmission electron microscopy, atomic force microscopy, and X-ray diffraction are presented in conjunction with the mechanical and rheological properties of these nanocomposites. Detailed quantitative analyses of the dispersed clay particles revealed that the aspect ratio of clay particles decreased as clay content increased but increased as the amount of PP-g-MA increased. Analysis of the elastomer phase revealed that the aspect ratio of the elastomer phase increased in both cases. The presence of clay causes the elastomer particles to become highly elongated in shape and retards the coalescence of the elastomer particles. The modulus and yield strength are enhanced by increasing the PP-g-MA/organoclay ratios. High levels of toughness of the TPO can be maintained when moderate levels of (organoclay) MMT and PP-g-MA are used. The rheological properties suggested that the addition of clay particles and PP-g-MA has a profound influence on the long time stress relaxation of the TPO nanocomposites. Based on these analyses, it is clear that it is important to optimize the ratio of PP-g-MA and organoclay to obtain the desired balance of mechanical properties and processing characteristics for TPO nanocomposites.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2007.08.010