Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method
Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET)...
Gespeichert in:
Veröffentlicht in: | Sensors and materials 2007-01, Vol.19 (5), p.287-298 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 5 |
container_start_page | 287 |
container_title | Sensors and materials |
container_volume | 19 |
creator | Tian, Shi-Yi Deng, Shao-Ping Ding, Chun-Hui Yin, Chun-Li Li, Hua |
description | Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_30123294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30123294</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-4fe3aefd5a628bed27c87b1b1b7ae7dd46c9c7acfd2ea60b885caa31138b0a753</originalsourceid><addsrcrecordid>eNpNULtOwzAUzQASVek_eGKLZMd5OGMo5SEVgVALY3Vj3wQjxy62M_RH-F4sYEBnOGc5D52zbEFbVuZly6uLbBXCB6WUiYrWRb3Ivm50kF5P2kLUzhI3kBdU5E1bJN2IZB-0HcmrMxGmCaPXkmwMyuidTXLn7DgjuYaQPMn9OJuoB4-fM1p5IlvwI-bddDQ6zgr_xZxIZxV5hhjR29Qo3Wj1z4BHjO9OXWbnA5iAqz9eZvvbzW59n2-f7h7W3TY_MlHHvByQAw6qgroQPaqikaLpWUID2ChV1rKVDchBFQg17YWoJABnjIueQlPxZXb1m3v0Lo0O8TClP9AYsOjmcOCUFbxoS_4NjohoCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30123294</pqid></control><display><type>article</type><title>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tian, Shi-Yi ; Deng, Shao-Ping ; Ding, Chun-Hui ; Yin, Chun-Li ; Li, Hua</creator><creatorcontrib>Tian, Shi-Yi ; Deng, Shao-Ping ; Ding, Chun-Hui ; Yin, Chun-Li ; Li, Hua</creatorcontrib><description>Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.</description><identifier>ISSN: 0914-4935</identifier><language>eng</language><ispartof>Sensors and materials, 2007-01, Vol.19 (5), p.287-298</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Tian, Shi-Yi</creatorcontrib><creatorcontrib>Deng, Shao-Ping</creatorcontrib><creatorcontrib>Ding, Chun-Hui</creatorcontrib><creatorcontrib>Yin, Chun-Li</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><title>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</title><title>Sensors and materials</title><description>Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.</description><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNULtOwzAUzQASVek_eGKLZMd5OGMo5SEVgVALY3Vj3wQjxy62M_RH-F4sYEBnOGc5D52zbEFbVuZly6uLbBXCB6WUiYrWRb3Ivm50kF5P2kLUzhI3kBdU5E1bJN2IZB-0HcmrMxGmCaPXkmwMyuidTXLn7DgjuYaQPMn9OJuoB4-fM1p5IlvwI-bddDQ6zgr_xZxIZxV5hhjR29Qo3Wj1z4BHjO9OXWbnA5iAqz9eZvvbzW59n2-f7h7W3TY_MlHHvByQAw6qgroQPaqikaLpWUID2ChV1rKVDchBFQg17YWoJABnjIueQlPxZXb1m3v0Lo0O8TClP9AYsOjmcOCUFbxoS_4NjohoCw</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Tian, Shi-Yi</creator><creator>Deng, Shao-Ping</creator><creator>Ding, Chun-Hui</creator><creator>Yin, Chun-Li</creator><creator>Li, Hua</creator><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070101</creationdate><title>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</title><author>Tian, Shi-Yi ; Deng, Shao-Ping ; Ding, Chun-Hui ; Yin, Chun-Li ; Li, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-4fe3aefd5a628bed27c87b1b1b7ae7dd46c9c7acfd2ea60b885caa31138b0a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Shi-Yi</creatorcontrib><creatorcontrib>Deng, Shao-Ping</creatorcontrib><creatorcontrib>Ding, Chun-Hui</creatorcontrib><creatorcontrib>Yin, Chun-Li</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Shi-Yi</au><au>Deng, Shao-Ping</au><au>Ding, Chun-Hui</au><au>Yin, Chun-Li</au><au>Li, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</atitle><jtitle>Sensors and materials</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>19</volume><issue>5</issue><spage>287</spage><epage>298</epage><pages>287-298</pages><issn>0914-4935</issn><abstract>Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.</abstract><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0914-4935 |
ispartof | Sensors and materials, 2007-01, Vol.19 (5), p.287-298 |
issn | 0914-4935 |
language | eng |
recordid | cdi_proquest_miscellaneous_30123294 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20Red%20Wine%20Age%20Using%20Voltammetric%20Electronic%20Tongue%20Based%20on%20Multifrequency%20Large-Amplitude%20Voltammetry%20And%20Pattern%20Recognition%20Method&rft.jtitle=Sensors%20and%20materials&rft.au=Tian,%20Shi-Yi&rft.date=2007-01-01&rft.volume=19&rft.issue=5&rft.spage=287&rft.epage=298&rft.pages=287-298&rft.issn=0914-4935&rft_id=info:doi/&rft_dat=%3Cproquest%3E30123294%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30123294&rft_id=info:pmid/&rfr_iscdi=true |