Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method

Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2007-01, Vol.19 (5), p.287-298
Hauptverfasser: Tian, Shi-Yi, Deng, Shao-Ping, Ding, Chun-Hui, Yin, Chun-Li, Li, Hua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 5
container_start_page 287
container_title Sensors and materials
container_volume 19
creator Tian, Shi-Yi
Deng, Shao-Ping
Ding, Chun-Hui
Yin, Chun-Li
Li, Hua
description Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_30123294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30123294</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-4fe3aefd5a628bed27c87b1b1b7ae7dd46c9c7acfd2ea60b885caa31138b0a753</originalsourceid><addsrcrecordid>eNpNULtOwzAUzQASVek_eGKLZMd5OGMo5SEVgVALY3Vj3wQjxy62M_RH-F4sYEBnOGc5D52zbEFbVuZly6uLbBXCB6WUiYrWRb3Ivm50kF5P2kLUzhI3kBdU5E1bJN2IZB-0HcmrMxGmCaPXkmwMyuidTXLn7DgjuYaQPMn9OJuoB4-fM1p5IlvwI-bddDQ6zgr_xZxIZxV5hhjR29Qo3Wj1z4BHjO9OXWbnA5iAqz9eZvvbzW59n2-f7h7W3TY_MlHHvByQAw6qgroQPaqikaLpWUID2ChV1rKVDchBFQg17YWoJABnjIueQlPxZXb1m3v0Lo0O8TClP9AYsOjmcOCUFbxoS_4NjohoCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30123294</pqid></control><display><type>article</type><title>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tian, Shi-Yi ; Deng, Shao-Ping ; Ding, Chun-Hui ; Yin, Chun-Li ; Li, Hua</creator><creatorcontrib>Tian, Shi-Yi ; Deng, Shao-Ping ; Ding, Chun-Hui ; Yin, Chun-Li ; Li, Hua</creatorcontrib><description>Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.</description><identifier>ISSN: 0914-4935</identifier><language>eng</language><ispartof>Sensors and materials, 2007-01, Vol.19 (5), p.287-298</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Tian, Shi-Yi</creatorcontrib><creatorcontrib>Deng, Shao-Ping</creatorcontrib><creatorcontrib>Ding, Chun-Hui</creatorcontrib><creatorcontrib>Yin, Chun-Li</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><title>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</title><title>Sensors and materials</title><description>Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.</description><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNULtOwzAUzQASVek_eGKLZMd5OGMo5SEVgVALY3Vj3wQjxy62M_RH-F4sYEBnOGc5D52zbEFbVuZly6uLbBXCB6WUiYrWRb3Ivm50kF5P2kLUzhI3kBdU5E1bJN2IZB-0HcmrMxGmCaPXkmwMyuidTXLn7DgjuYaQPMn9OJuoB4-fM1p5IlvwI-bddDQ6zgr_xZxIZxV5hhjR29Qo3Wj1z4BHjO9OXWbnA5iAqz9eZvvbzW59n2-f7h7W3TY_MlHHvByQAw6qgroQPaqikaLpWUID2ChV1rKVDchBFQg17YWoJABnjIueQlPxZXb1m3v0Lo0O8TClP9AYsOjmcOCUFbxoS_4NjohoCw</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Tian, Shi-Yi</creator><creator>Deng, Shao-Ping</creator><creator>Ding, Chun-Hui</creator><creator>Yin, Chun-Li</creator><creator>Li, Hua</creator><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070101</creationdate><title>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</title><author>Tian, Shi-Yi ; Deng, Shao-Ping ; Ding, Chun-Hui ; Yin, Chun-Li ; Li, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-4fe3aefd5a628bed27c87b1b1b7ae7dd46c9c7acfd2ea60b885caa31138b0a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Shi-Yi</creatorcontrib><creatorcontrib>Deng, Shao-Ping</creatorcontrib><creatorcontrib>Ding, Chun-Hui</creatorcontrib><creatorcontrib>Yin, Chun-Li</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Shi-Yi</au><au>Deng, Shao-Ping</au><au>Ding, Chun-Hui</au><au>Yin, Chun-Li</au><au>Li, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method</atitle><jtitle>Sensors and materials</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>19</volume><issue>5</issue><spage>287</spage><epage>298</epage><pages>287-298</pages><issn>0914-4935</issn><abstract>Three methods of multivariate data analysis (MVAD), principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) and partial least squares discriminating analysis (PLS-DA), were used for processing data from a multifrequency large-amplitude pulse electronic tongue (MLAP-ET) in this paper. The dry red wine samples from the same company, produced by the same type of grape from the same vineyard, but with different vintages were studied using MLAP-ET. The results showed that these three methods were all effective for the data treatment of MLAP-ET to assess the vintage of red wine samples but differ in their discriminating ability. PLS-DA had the best classification property and was most suitable for processing the data from MLAP-ET.</abstract><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2007-01, Vol.19 (5), p.287-298
issn 0914-4935
language eng
recordid cdi_proquest_miscellaneous_30123294
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Discrimination of Red Wine Age Using Voltammetric Electronic Tongue Based on Multifrequency Large-Amplitude Voltammetry And Pattern Recognition Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20Red%20Wine%20Age%20Using%20Voltammetric%20Electronic%20Tongue%20Based%20on%20Multifrequency%20Large-Amplitude%20Voltammetry%20And%20Pattern%20Recognition%20Method&rft.jtitle=Sensors%20and%20materials&rft.au=Tian,%20Shi-Yi&rft.date=2007-01-01&rft.volume=19&rft.issue=5&rft.spage=287&rft.epage=298&rft.pages=287-298&rft.issn=0914-4935&rft_id=info:doi/&rft_dat=%3Cproquest%3E30123294%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30123294&rft_id=info:pmid/&rfr_iscdi=true