Optimality for Sound Pressure Minimization in Vibro-Acoustic System and Structural Optimization (2nd Report Sound Pressure Minimization at Natural Frequency)

The sound pressure in the frequency domain is expressed by a scalar product of a structural frequency response function (FRF) and an acoustic FRF. Therefore, the optimality condition for sound pressure minimization is that, the amplitude of the sound pressure is zero when structural FRF and acoustic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nihon Kikai Gakkai ronbunshū. C 2007-07, Vol.19 (7), p.2080-2087
Hauptverfasser: Furuya, Kohei, Yoshimura, Takuya, Suto, Akira, Narikuni, Seiya
Format: Artikel
Sprache:jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2087
container_issue 7
container_start_page 2080
container_title Nihon Kikai Gakkai ronbunshū. C
container_volume 19
creator Furuya, Kohei
Yoshimura, Takuya
Suto, Akira
Narikuni, Seiya
description The sound pressure in the frequency domain is expressed by a scalar product of a structural frequency response function (FRF) and an acoustic FRF. Therefore, the optimality condition for sound pressure minimization is that, the amplitude of the sound pressure is zero when structural FRF and acoustic FRF are orthogonal. In this paper, sound pressure minimization at natural frequency is considered, based on the optimality condition. The acoustic FRF is not variable for structural modification in low frequency range. Therefore one can recognize at which frequency the structural vibration is easily transmitted to the sound pressure. And a novel efficient optimization approach based on the above knowledge is proposed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_30119616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30119616</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_301196163</originalsourceid><addsrcrecordid>eNqNjr1OAzEQhF2AlAjyDlshKE7yxeTIlQgR0QARh2gjx2yklXz2sbsujnfhXTnx0yKqKWa-T3Nk5tatr6qVXV7OzEKE9tba1jWtW8_Nx-Og1PtIOsIhM3S5pFfYMooURrinRD29e6WcgBK80J5zdR1yEaUA3SiKPfgJ6ZRL0MI-wpfyFzpfTuUTDpn1T7lXePDf_IbxrWAK48WpOT74KLj4yRNztrl9vrmrBs7TRHTXkwSM0SecLu2creu2qRv37-En711fuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30119616</pqid></control><display><type>article</type><title>Optimality for Sound Pressure Minimization in Vibro-Acoustic System and Structural Optimization (2nd Report Sound Pressure Minimization at Natural Frequency)</title><source>J-STAGE Free</source><source>EZB Electronic Journals Library</source><creator>Furuya, Kohei ; Yoshimura, Takuya ; Suto, Akira ; Narikuni, Seiya</creator><creatorcontrib>Furuya, Kohei ; Yoshimura, Takuya ; Suto, Akira ; Narikuni, Seiya</creatorcontrib><description>The sound pressure in the frequency domain is expressed by a scalar product of a structural frequency response function (FRF) and an acoustic FRF. Therefore, the optimality condition for sound pressure minimization is that, the amplitude of the sound pressure is zero when structural FRF and acoustic FRF are orthogonal. In this paper, sound pressure minimization at natural frequency is considered, based on the optimality condition. The acoustic FRF is not variable for structural modification in low frequency range. Therefore one can recognize at which frequency the structural vibration is easily transmitted to the sound pressure. And a novel efficient optimization approach based on the above knowledge is proposed.</description><identifier>ISSN: 0387-5024</identifier><language>jpn</language><ispartof>Nihon Kikai Gakkai ronbunshū. C, 2007-07, Vol.19 (7), p.2080-2087</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Furuya, Kohei</creatorcontrib><creatorcontrib>Yoshimura, Takuya</creatorcontrib><creatorcontrib>Suto, Akira</creatorcontrib><creatorcontrib>Narikuni, Seiya</creatorcontrib><title>Optimality for Sound Pressure Minimization in Vibro-Acoustic System and Structural Optimization (2nd Report Sound Pressure Minimization at Natural Frequency)</title><title>Nihon Kikai Gakkai ronbunshū. C</title><description>The sound pressure in the frequency domain is expressed by a scalar product of a structural frequency response function (FRF) and an acoustic FRF. Therefore, the optimality condition for sound pressure minimization is that, the amplitude of the sound pressure is zero when structural FRF and acoustic FRF are orthogonal. In this paper, sound pressure minimization at natural frequency is considered, based on the optimality condition. The acoustic FRF is not variable for structural modification in low frequency range. Therefore one can recognize at which frequency the structural vibration is easily transmitted to the sound pressure. And a novel efficient optimization approach based on the above knowledge is proposed.</description><issn>0387-5024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNjr1OAzEQhF2AlAjyDlshKE7yxeTIlQgR0QARh2gjx2yklXz2sbsujnfhXTnx0yKqKWa-T3Nk5tatr6qVXV7OzEKE9tba1jWtW8_Nx-Og1PtIOsIhM3S5pFfYMooURrinRD29e6WcgBK80J5zdR1yEaUA3SiKPfgJ6ZRL0MI-wpfyFzpfTuUTDpn1T7lXePDf_IbxrWAK48WpOT74KLj4yRNztrl9vrmrBs7TRHTXkwSM0SecLu2creu2qRv37-En711fuA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Furuya, Kohei</creator><creator>Yoshimura, Takuya</creator><creator>Suto, Akira</creator><creator>Narikuni, Seiya</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Optimality for Sound Pressure Minimization in Vibro-Acoustic System and Structural Optimization (2nd Report Sound Pressure Minimization at Natural Frequency)</title><author>Furuya, Kohei ; Yoshimura, Takuya ; Suto, Akira ; Narikuni, Seiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_301196163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Furuya, Kohei</creatorcontrib><creatorcontrib>Yoshimura, Takuya</creatorcontrib><creatorcontrib>Suto, Akira</creatorcontrib><creatorcontrib>Narikuni, Seiya</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Nihon Kikai Gakkai ronbunshū. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furuya, Kohei</au><au>Yoshimura, Takuya</au><au>Suto, Akira</au><au>Narikuni, Seiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimality for Sound Pressure Minimization in Vibro-Acoustic System and Structural Optimization (2nd Report Sound Pressure Minimization at Natural Frequency)</atitle><jtitle>Nihon Kikai Gakkai ronbunshū. C</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>19</volume><issue>7</issue><spage>2080</spage><epage>2087</epage><pages>2080-2087</pages><issn>0387-5024</issn><abstract>The sound pressure in the frequency domain is expressed by a scalar product of a structural frequency response function (FRF) and an acoustic FRF. Therefore, the optimality condition for sound pressure minimization is that, the amplitude of the sound pressure is zero when structural FRF and acoustic FRF are orthogonal. In this paper, sound pressure minimization at natural frequency is considered, based on the optimality condition. The acoustic FRF is not variable for structural modification in low frequency range. Therefore one can recognize at which frequency the structural vibration is easily transmitted to the sound pressure. And a novel efficient optimization approach based on the above knowledge is proposed.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0387-5024
ispartof Nihon Kikai Gakkai ronbunshū. C, 2007-07, Vol.19 (7), p.2080-2087
issn 0387-5024
language jpn
recordid cdi_proquest_miscellaneous_30119616
source J-STAGE Free; EZB Electronic Journals Library
title Optimality for Sound Pressure Minimization in Vibro-Acoustic System and Structural Optimization (2nd Report Sound Pressure Minimization at Natural Frequency)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimality%20for%20Sound%20Pressure%20Minimization%20in%20Vibro-Acoustic%20System%20and%20Structural%20Optimization%20(2nd%20Report%20Sound%20Pressure%20Minimization%20at%20Natural%20Frequency)&rft.jtitle=Nihon%20Kikai%20Gakkai%20ronbunsh%C5%AB.%20C&rft.au=Furuya,%20Kohei&rft.date=2007-07-01&rft.volume=19&rft.issue=7&rft.spage=2080&rft.epage=2087&rft.pages=2080-2087&rft.issn=0387-5024&rft_id=info:doi/&rft_dat=%3Cproquest%3E30119616%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30119616&rft_id=info:pmid/&rfr_iscdi=true