Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt pct ni austenite
The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were perfor...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2007-10, Vol.38 (10), p.2400-2409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2409 |
---|---|
container_issue | 10 |
container_start_page | 2400 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 38 |
creator | ABBOD, M. F SELLARS, C. M CIZEK, P LINKENS, D. A MAHFOUF, M |
description | The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s^sup -1^. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s^sup -1^, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11661-007-9292-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30116892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30116892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-510bfe637810c0cce8ab29ffff518eae9a1c829edf0d0cd8d0fdceaca6bfceb13</originalsourceid><addsrcrecordid>eNpdkVFrFTEQhZei0Fr7A_oWCvrU6CRp9m4epVhbaOmL0scwm0x6U_Ym1ySr1l_vXm5FcF7mMHxnGOZ03amADwJg9bEK0feCL5IbaSTXB92R0BeKC3MBrxYNK8V1L9Vh96bWJwAQRvVH3XyXPU0xPbK2Jham_JONtMYfMZdzVsiV59pwmuJvbDGnc4bJs7_D_Fhwu46ONfrV5kIsJrbOjXsKuWzIsyviCthDY1vXWIoM59ooxUZvu9cBp0onL_24-3b1-evlNb-9_3Jz-emWO6VU41rAGKhXq0GAA-dowFGasJQWAyEZFG6QhnwAD84PHoJ3hA77MTgahTru3u_3bkv-PlNtdhOro2nCRHmuVsHytsHIBTz7D3zKc0nLbVYKtQKtpVogsYdcybUWCnZb4gbLsxVgdynYfQp2J3cpWL143r0sxupwCgWTi_Wf0Qg1DFKrPz5iilU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213705523</pqid></control><display><type>article</type><title>Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt pct ni austenite</title><source>SpringerLink Journals - AutoHoldings</source><creator>ABBOD, M. F ; SELLARS, C. M ; CIZEK, P ; LINKENS, D. A ; MAHFOUF, M</creator><creatorcontrib>ABBOD, M. F ; SELLARS, C. M ; CIZEK, P ; LINKENS, D. A ; MAHFOUF, M</creatorcontrib><description>The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s^sup -1^. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s^sup -1^, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-007-9292-5</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Alloys ; Applied sciences ; Crystallography ; Electron microscopes ; Exact sciences and technology ; Grain size ; Heat transfer ; Metallurgy ; Metals. Metallurgy ; Plastic deformation ; Stress-strain curves ; Temperature ; Transmission electron microscopy</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2007-10, Vol.38 (10), p.2400-2409</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Oct 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-510bfe637810c0cce8ab29ffff518eae9a1c829edf0d0cd8d0fdceaca6bfceb13</citedby><cites>FETCH-LOGICAL-c333t-510bfe637810c0cce8ab29ffff518eae9a1c829edf0d0cd8d0fdceaca6bfceb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19138825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ABBOD, M. F</creatorcontrib><creatorcontrib>SELLARS, C. M</creatorcontrib><creatorcontrib>CIZEK, P</creatorcontrib><creatorcontrib>LINKENS, D. A</creatorcontrib><creatorcontrib>MAHFOUF, M</creatorcontrib><title>Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt pct ni austenite</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s^sup -1^. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s^sup -1^, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks. [PUBLICATION ABSTRACT]</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Crystallography</subject><subject>Electron microscopes</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Heat transfer</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Plastic deformation</subject><subject>Stress-strain curves</subject><subject>Temperature</subject><subject>Transmission electron microscopy</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkVFrFTEQhZei0Fr7A_oWCvrU6CRp9m4epVhbaOmL0scwm0x6U_Ym1ySr1l_vXm5FcF7mMHxnGOZ03amADwJg9bEK0feCL5IbaSTXB92R0BeKC3MBrxYNK8V1L9Vh96bWJwAQRvVH3XyXPU0xPbK2Jham_JONtMYfMZdzVsiV59pwmuJvbDGnc4bJs7_D_Fhwu46ONfrV5kIsJrbOjXsKuWzIsyviCthDY1vXWIoM59ooxUZvu9cBp0onL_24-3b1-evlNb-9_3Jz-emWO6VU41rAGKhXq0GAA-dowFGasJQWAyEZFG6QhnwAD84PHoJ3hA77MTgahTru3u_3bkv-PlNtdhOro2nCRHmuVsHytsHIBTz7D3zKc0nLbVYKtQKtpVogsYdcybUWCnZb4gbLsxVgdynYfQp2J3cpWL143r0sxupwCgWTi_Wf0Qg1DFKrPz5iilU</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>ABBOD, M. F</creator><creator>SELLARS, C. M</creator><creator>CIZEK, P</creator><creator>LINKENS, D. A</creator><creator>MAHFOUF, M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20071001</creationdate><title>Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt pct ni austenite</title><author>ABBOD, M. F ; SELLARS, C. M ; CIZEK, P ; LINKENS, D. A ; MAHFOUF, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-510bfe637810c0cce8ab29ffff518eae9a1c829edf0d0cd8d0fdceaca6bfceb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Crystallography</topic><topic>Electron microscopes</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Heat transfer</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Plastic deformation</topic><topic>Stress-strain curves</topic><topic>Temperature</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ABBOD, M. F</creatorcontrib><creatorcontrib>SELLARS, C. M</creatorcontrib><creatorcontrib>CIZEK, P</creatorcontrib><creatorcontrib>LINKENS, D. A</creatorcontrib><creatorcontrib>MAHFOUF, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ABBOD, M. F</au><au>SELLARS, C. M</au><au>CIZEK, P</au><au>LINKENS, D. A</au><au>MAHFOUF, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt pct ni austenite</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>38</volume><issue>10</issue><spage>2400</spage><epage>2409</epage><pages>2400-2409</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s^sup -1^. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s^sup -1^, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-007-9292-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2007-10, Vol.38 (10), p.2400-2409 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_30116892 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Applied sciences Crystallography Electron microscopes Exact sciences and technology Grain size Heat transfer Metallurgy Metals. Metallurgy Plastic deformation Stress-strain curves Temperature Transmission electron microscopy |
title | Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt pct ni austenite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20flow%20behavior,%20recrystallization,%20and%20crystallographic%20texture%20in%20hot-deformed%20Fe-30%20Wt%20pct%20ni%20austenite&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=ABBOD,%20M.%20F&rft.date=2007-10-01&rft.volume=38&rft.issue=10&rft.spage=2400&rft.epage=2409&rft.pages=2400-2409&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-007-9292-5&rft_dat=%3Cproquest_cross%3E30116892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213705523&rft_id=info:pmid/&rfr_iscdi=true |