New Model for Compressible Vortices

A new analytical solution for self-similar compressible vortices is derived in this paper. Based on the previous incompressible formulation of intense vortices, we derived a theoretical model that includes density and temperature variations. The governing equations are simplified assuming strong vor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2007-08, Vol.129 (8), p.1073-1079
Hauptverfasser: Aboelkassem, Yasser, Vatistas, Georgios H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 8
container_start_page 1073
container_title Journal of fluids engineering
container_volume 129
creator Aboelkassem, Yasser
Vatistas, Georgios H.
description A new analytical solution for self-similar compressible vortices is derived in this paper. Based on the previous incompressible formulation of intense vortices, we derived a theoretical model that includes density and temperature variations. The governing equations are simplified assuming strong vortex conditions. Part of the hydrodynamic problem (mass and momentum) is shown to be analogous to the incompressible kind and as such the velocity is obtained through a straightforward variable transformation. Since all the velocity components are bounded in the radial direction, the density and pressure are then determined by standard numerical integration without the usual stringent simplification for the radial velocity. While compressibility is shown not to affect the tangential velocity, it influences only the meridional flow (radial and axial velocities). The temperature, pressure, and density are found to decrease along the converging flow direction. The traditional homentropic flow hypothesis, often employed in vortex stability and optical studies, is shown to undervalue the density and greatly overestimate the temperature. Comparable to vorticity diffusion balance for the incompressible case, the incoming flow carries the required energy to offset the contributions of conduction, viscous dissipation, and material expansion, thus keeping the temperature steady. This model is general and can be used to obtain a compressible version for all classical previous incompressible analysis from the literature such as Rankine, Burgers, Taylor, and Sullivan vortices.
doi_str_mv 10.1115/1.2746897
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30112364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30112364</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-eb8d813a8194d8e545bd3572c7aac81acace00405415d0d822737b646e86d7ff3</originalsourceid><addsrcrecordid>eNpF0M1LAzEQBfAgCtbqwbOXBVHwsHUmH5vsUYpfUPWi4i1kk1lY2W1q0iL-96604Gkuv3nwHmOnCDNEVNc441pWptZ7bIKKm7IG_NhnE4DalJwDP2RHOX8CoBDSTNj5M30XTzFQX7QxFfM4rBLl3DU9Fe8xrTtP-ZgdtK7PdLK7U_Z2d_s6fygXL_eP85tF6QTCuqTGBIPCGaxlMKSkaoJQmnvtnDfovPMEIEFJVAGC4VwL3VSyIlMF3bZiyi63uasUvzaU13bosqe-d0uKm2wFIHJRyRFebaFPMedErV2lbnDpxyLYvxks2t0Mo73YhbrsXd8mt_Rd_n-oQSIAH93Z1rk8kP2Mm7Qcu1qpao1K_AIa4mLy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30112364</pqid></control><display><type>article</type><title>New Model for Compressible Vortices</title><source>ASME Transactions Journals (Current)</source><creator>Aboelkassem, Yasser ; Vatistas, Georgios H.</creator><creatorcontrib>Aboelkassem, Yasser ; Vatistas, Georgios H.</creatorcontrib><description>A new analytical solution for self-similar compressible vortices is derived in this paper. Based on the previous incompressible formulation of intense vortices, we derived a theoretical model that includes density and temperature variations. The governing equations are simplified assuming strong vortex conditions. Part of the hydrodynamic problem (mass and momentum) is shown to be analogous to the incompressible kind and as such the velocity is obtained through a straightforward variable transformation. Since all the velocity components are bounded in the radial direction, the density and pressure are then determined by standard numerical integration without the usual stringent simplification for the radial velocity. While compressibility is shown not to affect the tangential velocity, it influences only the meridional flow (radial and axial velocities). The temperature, pressure, and density are found to decrease along the converging flow direction. The traditional homentropic flow hypothesis, often employed in vortex stability and optical studies, is shown to undervalue the density and greatly overestimate the temperature. Comparable to vorticity diffusion balance for the incompressible case, the incoming flow carries the required energy to offset the contributions of conduction, viscous dissipation, and material expansion, thus keeping the temperature steady. This model is general and can be used to obtain a compressible version for all classical previous incompressible analysis from the literature such as Rankine, Burgers, Taylor, and Sullivan vortices.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.2746897</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Physics ; Rotational flow and vorticity ; Vortex dynamics</subject><ispartof>Journal of fluids engineering, 2007-08, Vol.129 (8), p.1073-1079</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-eb8d813a8194d8e545bd3572c7aac81acace00405415d0d822737b646e86d7ff3</citedby><cites>FETCH-LOGICAL-a310t-eb8d813a8194d8e545bd3572c7aac81acace00405415d0d822737b646e86d7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19041002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboelkassem, Yasser</creatorcontrib><creatorcontrib>Vatistas, Georgios H.</creatorcontrib><title>New Model for Compressible Vortices</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>A new analytical solution for self-similar compressible vortices is derived in this paper. Based on the previous incompressible formulation of intense vortices, we derived a theoretical model that includes density and temperature variations. The governing equations are simplified assuming strong vortex conditions. Part of the hydrodynamic problem (mass and momentum) is shown to be analogous to the incompressible kind and as such the velocity is obtained through a straightforward variable transformation. Since all the velocity components are bounded in the radial direction, the density and pressure are then determined by standard numerical integration without the usual stringent simplification for the radial velocity. While compressibility is shown not to affect the tangential velocity, it influences only the meridional flow (radial and axial velocities). The temperature, pressure, and density are found to decrease along the converging flow direction. The traditional homentropic flow hypothesis, often employed in vortex stability and optical studies, is shown to undervalue the density and greatly overestimate the temperature. Comparable to vorticity diffusion balance for the incompressible case, the incoming flow carries the required energy to offset the contributions of conduction, viscous dissipation, and material expansion, thus keeping the temperature steady. This model is general and can be used to obtain a compressible version for all classical previous incompressible analysis from the literature such as Rankine, Burgers, Taylor, and Sullivan vortices.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Physics</subject><subject>Rotational flow and vorticity</subject><subject>Vortex dynamics</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpF0M1LAzEQBfAgCtbqwbOXBVHwsHUmH5vsUYpfUPWi4i1kk1lY2W1q0iL-96604Gkuv3nwHmOnCDNEVNc441pWptZ7bIKKm7IG_NhnE4DalJwDP2RHOX8CoBDSTNj5M30XTzFQX7QxFfM4rBLl3DU9Fe8xrTtP-ZgdtK7PdLK7U_Z2d_s6fygXL_eP85tF6QTCuqTGBIPCGaxlMKSkaoJQmnvtnDfovPMEIEFJVAGC4VwL3VSyIlMF3bZiyi63uasUvzaU13bosqe-d0uKm2wFIHJRyRFebaFPMedErV2lbnDpxyLYvxks2t0Mo73YhbrsXd8mt_Rd_n-oQSIAH93Z1rk8kP2Mm7Qcu1qpao1K_AIa4mLy</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Aboelkassem, Yasser</creator><creator>Vatistas, Georgios H.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070801</creationdate><title>New Model for Compressible Vortices</title><author>Aboelkassem, Yasser ; Vatistas, Georgios H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-eb8d813a8194d8e545bd3572c7aac81acace00405415d0d822737b646e86d7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Physics</topic><topic>Rotational flow and vorticity</topic><topic>Vortex dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboelkassem, Yasser</creatorcontrib><creatorcontrib>Vatistas, Georgios H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboelkassem, Yasser</au><au>Vatistas, Georgios H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Model for Compressible Vortices</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>129</volume><issue>8</issue><spage>1073</spage><epage>1079</epage><pages>1073-1079</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>A new analytical solution for self-similar compressible vortices is derived in this paper. Based on the previous incompressible formulation of intense vortices, we derived a theoretical model that includes density and temperature variations. The governing equations are simplified assuming strong vortex conditions. Part of the hydrodynamic problem (mass and momentum) is shown to be analogous to the incompressible kind and as such the velocity is obtained through a straightforward variable transformation. Since all the velocity components are bounded in the radial direction, the density and pressure are then determined by standard numerical integration without the usual stringent simplification for the radial velocity. While compressibility is shown not to affect the tangential velocity, it influences only the meridional flow (radial and axial velocities). The temperature, pressure, and density are found to decrease along the converging flow direction. The traditional homentropic flow hypothesis, often employed in vortex stability and optical studies, is shown to undervalue the density and greatly overestimate the temperature. Comparable to vorticity diffusion balance for the incompressible case, the incoming flow carries the required energy to offset the contributions of conduction, viscous dissipation, and material expansion, thus keeping the temperature steady. This model is general and can be used to obtain a compressible version for all classical previous incompressible analysis from the literature such as Rankine, Burgers, Taylor, and Sullivan vortices.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2746897</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 2007-08, Vol.129 (8), p.1073-1079
issn 0098-2202
1528-901X
language eng
recordid cdi_proquest_miscellaneous_30112364
source ASME Transactions Journals (Current)
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Physics
Rotational flow and vorticity
Vortex dynamics
title New Model for Compressible Vortices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Model%20for%20Compressible%20Vortices&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Aboelkassem,%20Yasser&rft.date=2007-08-01&rft.volume=129&rft.issue=8&rft.spage=1073&rft.epage=1079&rft.pages=1073-1079&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.2746897&rft_dat=%3Cproquest_cross%3E30112364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30112364&rft_id=info:pmid/&rfr_iscdi=true