High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells
We report on the progress that we have made in the quality of our baseline process for the production of high efficiency soda lime glass/Mo/Cu(In,Ga)Se2 (CIGS)/CdS/i‐ZnO/ZnO:Al/MgF2 solar cells. The enhancement of the average performance level has enabled us to reach conversion efficiencies of up to...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2007-09, Vol.15 (6), p.507-519 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | 6 |
container_start_page | 507 |
container_title | Progress in photovoltaics |
container_volume | 15 |
creator | Jackson, Philip Würz, Roland Rau, Uwe Mattheis, Julian Kurth, Matthias Schlötzer, Thomas Bilger, Gerhard Werner, Jürgen H. |
description | We report on the progress that we have made in the quality of our baseline process for the production of high efficiency soda lime glass/Mo/Cu(In,Ga)Se2 (CIGS)/CdS/i‐ZnO/ZnO:Al/MgF2 solar cells. The enhancement of the average performance level has enabled us to reach conversion efficiencies of up to 19·3% (internal measurement). The new quality initiative uses process control, optical and electrical modelling, and the critical revision of all process steps as tools for the attainment of the 19% efficiency level. Our experiments show that the compositional process window for CIGS solar cells that have an efficiency of η ≈ 19% is very wide. Accordingly, we suggest that an efficiency of 19·0–19·5% is achievable in the following compositional process windows: 0·69 ≤ Cu/(Ga + In) ≤ 0·98 and 0·21 ≤ Ga/(Ga + In) ≤ 0·38. In addition, our results show that large CIGS grains are not a necessary requirement for high efficiencies up to 19%. These findings and the partly lacking ability to correlate certain aspects of our progress with experimental parameters lead us to the conclusion that there are still some important process variables undiscovered. From this conclusion and from the evaluation of the available data we infer that there is a potential for the enhancement of CIGS solar cell efficiencies beyond 20%. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/pip.757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_30106012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30106012</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3457-decd21f4cb381157763f4aabd8713ec22424b9782a2ea9524e5c51a90f16b8ce3</originalsourceid><addsrcrecordid>eNpFkF1PwjAUhhujiYjGv7AbjUaG_VjX9VJRYQko8SN413Slg2rZYGWR_QOv_Yn-Erdg9Oo9yfvk5JwHgGMEuwhCfLk0yy6jbAe0EOTcR5S_7jZziH3GOd0HB869QYhYxMMWiAdmNvdWpbRmXXmJdNqaTHtpXnjzptFpapTRmao6Xq88izP0_fm16fTl5vxJY8_lVhae0ta6Q7CXSuv00W-2wcvd7XNv4A8f-nHvaujPSECZP9VqilEaqIRECFHGQpIGUibTiCGiFcYBDhLOIiyxlpziQFNFkeQwRWESKU3a4HS7d1nkq1K7tVgY11wgM52XThBY_woRrsGTX1A6JW1ayEwZJ5aFWciiEojXDmjUcBdb7sNYXf33UDQ-Re1T1D7FOB7XUdP-ljZurTd_tCzeRcgIo2Jy3xcjOL4ZTcijuCY_deZ4KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30106012</pqid></control><display><type>article</type><title>High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells</title><source>Access via Wiley Online Library</source><creator>Jackson, Philip ; Würz, Roland ; Rau, Uwe ; Mattheis, Julian ; Kurth, Matthias ; Schlötzer, Thomas ; Bilger, Gerhard ; Werner, Jürgen H.</creator><creatorcontrib>Jackson, Philip ; Würz, Roland ; Rau, Uwe ; Mattheis, Julian ; Kurth, Matthias ; Schlötzer, Thomas ; Bilger, Gerhard ; Werner, Jürgen H.</creatorcontrib><description>We report on the progress that we have made in the quality of our baseline process for the production of high efficiency soda lime glass/Mo/Cu(In,Ga)Se2 (CIGS)/CdS/i‐ZnO/ZnO:Al/MgF2 solar cells. The enhancement of the average performance level has enabled us to reach conversion efficiencies of up to 19·3% (internal measurement). The new quality initiative uses process control, optical and electrical modelling, and the critical revision of all process steps as tools for the attainment of the 19% efficiency level. Our experiments show that the compositional process window for CIGS solar cells that have an efficiency of η ≈ 19% is very wide. Accordingly, we suggest that an efficiency of 19·0–19·5% is achievable in the following compositional process windows: 0·69 ≤ Cu/(Ga + In) ≤ 0·98 and 0·21 ≤ Ga/(Ga + In) ≤ 0·38. In addition, our results show that large CIGS grains are not a necessary requirement for high efficiencies up to 19%. These findings and the partly lacking ability to correlate certain aspects of our progress with experimental parameters lead us to the conclusion that there are still some important process variables undiscovered. From this conclusion and from the evaluation of the available data we infer that there is a potential for the enhancement of CIGS solar cell efficiencies beyond 20%. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.757</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; composition ; Cu(In ; Cu(In,Ga)Se2 ; Energy ; Exact sciences and technology ; Ga)Se2 ; high efficiencies ; Natural energy ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy ; structural properties ; thin film solar cells</subject><ispartof>Progress in photovoltaics, 2007-09, Vol.15 (6), p.507-519</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19017582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Philip</creatorcontrib><creatorcontrib>Würz, Roland</creatorcontrib><creatorcontrib>Rau, Uwe</creatorcontrib><creatorcontrib>Mattheis, Julian</creatorcontrib><creatorcontrib>Kurth, Matthias</creatorcontrib><creatorcontrib>Schlötzer, Thomas</creatorcontrib><creatorcontrib>Bilger, Gerhard</creatorcontrib><creatorcontrib>Werner, Jürgen H.</creatorcontrib><title>High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>We report on the progress that we have made in the quality of our baseline process for the production of high efficiency soda lime glass/Mo/Cu(In,Ga)Se2 (CIGS)/CdS/i‐ZnO/ZnO:Al/MgF2 solar cells. The enhancement of the average performance level has enabled us to reach conversion efficiencies of up to 19·3% (internal measurement). The new quality initiative uses process control, optical and electrical modelling, and the critical revision of all process steps as tools for the attainment of the 19% efficiency level. Our experiments show that the compositional process window for CIGS solar cells that have an efficiency of η ≈ 19% is very wide. Accordingly, we suggest that an efficiency of 19·0–19·5% is achievable in the following compositional process windows: 0·69 ≤ Cu/(Ga + In) ≤ 0·98 and 0·21 ≤ Ga/(Ga + In) ≤ 0·38. In addition, our results show that large CIGS grains are not a necessary requirement for high efficiencies up to 19%. These findings and the partly lacking ability to correlate certain aspects of our progress with experimental parameters lead us to the conclusion that there are still some important process variables undiscovered. From this conclusion and from the evaluation of the available data we infer that there is a potential for the enhancement of CIGS solar cell efficiencies beyond 20%. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>composition</subject><subject>Cu(In</subject><subject>Cu(In,Ga)Se2</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Ga)Se2</subject><subject>high efficiencies</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>structural properties</subject><subject>thin film solar cells</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkF1PwjAUhhujiYjGv7AbjUaG_VjX9VJRYQko8SN413Slg2rZYGWR_QOv_Yn-Erdg9Oo9yfvk5JwHgGMEuwhCfLk0yy6jbAe0EOTcR5S_7jZziH3GOd0HB869QYhYxMMWiAdmNvdWpbRmXXmJdNqaTHtpXnjzptFpapTRmao6Xq88izP0_fm16fTl5vxJY8_lVhae0ta6Q7CXSuv00W-2wcvd7XNv4A8f-nHvaujPSECZP9VqilEaqIRECFHGQpIGUibTiCGiFcYBDhLOIiyxlpziQFNFkeQwRWESKU3a4HS7d1nkq1K7tVgY11wgM52XThBY_woRrsGTX1A6JW1ayEwZJ5aFWciiEojXDmjUcBdb7sNYXf33UDQ-Re1T1D7FOB7XUdP-ljZurTd_tCzeRcgIo2Jy3xcjOL4ZTcijuCY_deZ4KA</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Jackson, Philip</creator><creator>Würz, Roland</creator><creator>Rau, Uwe</creator><creator>Mattheis, Julian</creator><creator>Kurth, Matthias</creator><creator>Schlötzer, Thomas</creator><creator>Bilger, Gerhard</creator><creator>Werner, Jürgen H.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200709</creationdate><title>High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells</title><author>Jackson, Philip ; Würz, Roland ; Rau, Uwe ; Mattheis, Julian ; Kurth, Matthias ; Schlötzer, Thomas ; Bilger, Gerhard ; Werner, Jürgen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3457-decd21f4cb381157763f4aabd8713ec22424b9782a2ea9524e5c51a90f16b8ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>composition</topic><topic>Cu(In</topic><topic>Cu(In,Ga)Se2</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Ga)Se2</topic><topic>high efficiencies</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>structural properties</topic><topic>thin film solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Philip</creatorcontrib><creatorcontrib>Würz, Roland</creatorcontrib><creatorcontrib>Rau, Uwe</creatorcontrib><creatorcontrib>Mattheis, Julian</creatorcontrib><creatorcontrib>Kurth, Matthias</creatorcontrib><creatorcontrib>Schlötzer, Thomas</creatorcontrib><creatorcontrib>Bilger, Gerhard</creatorcontrib><creatorcontrib>Werner, Jürgen H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Philip</au><au>Würz, Roland</au><au>Rau, Uwe</au><au>Mattheis, Julian</au><au>Kurth, Matthias</au><au>Schlötzer, Thomas</au><au>Bilger, Gerhard</au><au>Werner, Jürgen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2007-09</date><risdate>2007</risdate><volume>15</volume><issue>6</issue><spage>507</spage><epage>519</epage><pages>507-519</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>We report on the progress that we have made in the quality of our baseline process for the production of high efficiency soda lime glass/Mo/Cu(In,Ga)Se2 (CIGS)/CdS/i‐ZnO/ZnO:Al/MgF2 solar cells. The enhancement of the average performance level has enabled us to reach conversion efficiencies of up to 19·3% (internal measurement). The new quality initiative uses process control, optical and electrical modelling, and the critical revision of all process steps as tools for the attainment of the 19% efficiency level. Our experiments show that the compositional process window for CIGS solar cells that have an efficiency of η ≈ 19% is very wide. Accordingly, we suggest that an efficiency of 19·0–19·5% is achievable in the following compositional process windows: 0·69 ≤ Cu/(Ga + In) ≤ 0·98 and 0·21 ≤ Ga/(Ga + In) ≤ 0·38. In addition, our results show that large CIGS grains are not a necessary requirement for high efficiencies up to 19%. These findings and the partly lacking ability to correlate certain aspects of our progress with experimental parameters lead us to the conclusion that there are still some important process variables undiscovered. From this conclusion and from the evaluation of the available data we infer that there is a potential for the enhancement of CIGS solar cell efficiencies beyond 20%. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/pip.757</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7995 |
ispartof | Progress in photovoltaics, 2007-09, Vol.15 (6), p.507-519 |
issn | 1062-7995 1099-159X |
language | eng |
recordid | cdi_proquest_miscellaneous_30106012 |
source | Access via Wiley Online Library |
subjects | Applied sciences composition Cu(In Cu(In,Ga)Se2 Energy Exact sciences and technology Ga)Se2 high efficiencies Natural energy Photovoltaic conversion Solar cells. Photoelectrochemical cells Solar energy structural properties thin film solar cells |
title | High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20quality%20baseline%20for%20high%20efficiency,%20Cu(In1%E2%88%92x,Gax)Se2%20solar%20cells&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Jackson,%20Philip&rft.date=2007-09&rft.volume=15&rft.issue=6&rft.spage=507&rft.epage=519&rft.pages=507-519&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.757&rft_dat=%3Cproquest_pasca%3E30106012%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30106012&rft_id=info:pmid/&rfr_iscdi=true |