Second-order optimality conditions for constrained domain optimization
This paper develops boundary integral representation formulas for the second variations of cost functionals for elliptic domain optimization problems. From the collection of all Lipschitz domains ... which satisfy a constraint ... , a domain is sought which maximizes either ... , fixed ... , where ....
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2007-09, Vol.134 (3), p.413-432 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | 3 |
container_start_page | 413 |
container_title | Journal of optimization theory and applications |
container_volume | 134 |
creator | MILLER, D. F |
description | This paper develops boundary integral representation formulas for the second variations of cost functionals for elliptic domain optimization problems. From the collection of all Lipschitz domains ... which satisfy a constraint ... , a domain is sought which maximizes either ... , fixed ... , where ... solves the Dirichlet problem ... . Necessary and sufficient conditions for local optimality are presented in terms of the first and second variations of the cost functionals ... and ... . The second variations are computed with respect to domain variations which preserve the constraint. After first summarizing known facts about the first variations of ... and the cost functionals, a series of formulas relating various second variations of these quantities are derived. Calculating the second variations depends on finding first variations of solutions ... when the data ... are permitted to depend on the domain ... . (ProQuest: ... denotes formulae and non-USASCII text omitted) |
doi_str_mv | 10.1007/s10957-007-9218-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30098876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082189349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-13b7267181310b6d86213865bd43fb9637b1ab8630a86db528448aeb054f8c853</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKs_wNsiKF6iyWaTTI4iVoWCB_Uckt0spGw3Ndke6q83oQXBg6d5M3zzYOYhdEnJHSVE3idKFJc4S6xqClgdoRnlkuEaJByjGSF1jVnN1Ck6S2lFCFEgmxlavLs2jB0OsXOxCpvJr83gp11Vpn7yYUxVH2Jp0xSNH11XdWGdxR7236ZA5-ikN0NyF4c6R5-Lp4_HF7x8e359fFjillGYMGVW1kJSoIwSKzoQNWUguO0a1lslmLTUWBCMGBCd5TU0DRhnCW96aIGzObrZ-25i-Nq6NOm1T60bBjO6sE2albtAigze_gtSAvlNijUqo1d_0FXYxjGfoakSHDgVMkN0D7UxpBRdrzcxvyruspMuCeh9ArrIkoAuxtcHY5NaM_TRjK1Pv4uKcCIlYz8_6oSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196585167</pqid></control><display><type>article</type><title>Second-order optimality conditions for constrained domain optimization</title><source>Springer Nature</source><creator>MILLER, D. F</creator><creatorcontrib>MILLER, D. F</creatorcontrib><description>This paper develops boundary integral representation formulas for the second variations of cost functionals for elliptic domain optimization problems. From the collection of all Lipschitz domains ... which satisfy a constraint ... , a domain is sought which maximizes either ... , fixed ... , where ... solves the Dirichlet problem ... . Necessary and sufficient conditions for local optimality are presented in terms of the first and second variations of the cost functionals ... and ... . The second variations are computed with respect to domain variations which preserve the constraint. After first summarizing known facts about the first variations of ... and the cost functionals, a series of formulas relating various second variations of these quantities are derived. Calculating the second variations depends on finding first variations of solutions ... when the data ... are permitted to depend on the domain ... . (ProQuest: ... denotes formulae and non-USASCII text omitted)</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-007-9218-9</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; Boundaries ; Dirichlet problem ; Exact sciences and technology ; Functionals ; INT ; Mathematical analysis ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Preserves ; Representations ; Scripts ; Studies</subject><ispartof>Journal of optimization theory and applications, 2007-09, Vol.134 (3), p.413-432</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-13b7267181310b6d86213865bd43fb9637b1ab8630a86db528448aeb054f8c853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19050773$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MILLER, D. F</creatorcontrib><title>Second-order optimality conditions for constrained domain optimization</title><title>Journal of optimization theory and applications</title><description>This paper develops boundary integral representation formulas for the second variations of cost functionals for elliptic domain optimization problems. From the collection of all Lipschitz domains ... which satisfy a constraint ... , a domain is sought which maximizes either ... , fixed ... , where ... solves the Dirichlet problem ... . Necessary and sufficient conditions for local optimality are presented in terms of the first and second variations of the cost functionals ... and ... . The second variations are computed with respect to domain variations which preserve the constraint. After first summarizing known facts about the first variations of ... and the cost functionals, a series of formulas relating various second variations of these quantities are derived. Calculating the second variations depends on finding first variations of solutions ... when the data ... are permitted to depend on the domain ... . (ProQuest: ... denotes formulae and non-USASCII text omitted)</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Dirichlet problem</subject><subject>Exact sciences and technology</subject><subject>Functionals</subject><subject>INT</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Preserves</subject><subject>Representations</subject><subject>Scripts</subject><subject>Studies</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUFLAzEQhYMoWKs_wNsiKF6iyWaTTI4iVoWCB_Uckt0spGw3Ndke6q83oQXBg6d5M3zzYOYhdEnJHSVE3idKFJc4S6xqClgdoRnlkuEaJByjGSF1jVnN1Ck6S2lFCFEgmxlavLs2jB0OsXOxCpvJr83gp11Vpn7yYUxVH2Jp0xSNH11XdWGdxR7236ZA5-ikN0NyF4c6R5-Lp4_HF7x8e359fFjillGYMGVW1kJSoIwSKzoQNWUguO0a1lslmLTUWBCMGBCd5TU0DRhnCW96aIGzObrZ-25i-Nq6NOm1T60bBjO6sE2albtAigze_gtSAvlNijUqo1d_0FXYxjGfoakSHDgVMkN0D7UxpBRdrzcxvyruspMuCeh9ArrIkoAuxtcHY5NaM_TRjK1Pv4uKcCIlYz8_6oSw</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>MILLER, D. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20070901</creationdate><title>Second-order optimality conditions for constrained domain optimization</title><author>MILLER, D. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-13b7267181310b6d86213865bd43fb9637b1ab8630a86db528448aeb054f8c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Dirichlet problem</topic><topic>Exact sciences and technology</topic><topic>Functionals</topic><topic>INT</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Preserves</topic><topic>Representations</topic><topic>Scripts</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MILLER, D. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MILLER, D. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order optimality conditions for constrained domain optimization</atitle><jtitle>Journal of optimization theory and applications</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>134</volume><issue>3</issue><spage>413</spage><epage>432</epage><pages>413-432</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>This paper develops boundary integral representation formulas for the second variations of cost functionals for elliptic domain optimization problems. From the collection of all Lipschitz domains ... which satisfy a constraint ... , a domain is sought which maximizes either ... , fixed ... , where ... solves the Dirichlet problem ... . Necessary and sufficient conditions for local optimality are presented in terms of the first and second variations of the cost functionals ... and ... . The second variations are computed with respect to domain variations which preserve the constraint. After first summarizing known facts about the first variations of ... and the cost functionals, a series of formulas relating various second variations of these quantities are derived. Calculating the second variations depends on finding first variations of solutions ... when the data ... are permitted to depend on the domain ... . (ProQuest: ... denotes formulae and non-USASCII text omitted)</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s10957-007-9218-9</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2007-09, Vol.134 (3), p.413-432 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_30098876 |
source | Springer Nature |
subjects | Applied sciences Boundaries Dirichlet problem Exact sciences and technology Functionals INT Mathematical analysis Mathematical programming Operational research and scientific management Operational research. Management science Optimization Preserves Representations Scripts Studies |
title | Second-order optimality conditions for constrained domain optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20optimality%20conditions%20for%20constrained%20domain%20optimization&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=MILLER,%20D.%20F&rft.date=2007-09-01&rft.volume=134&rft.issue=3&rft.spage=413&rft.epage=432&rft.pages=413-432&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-007-9218-9&rft_dat=%3Cproquest_cross%3E1082189349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196585167&rft_id=info:pmid/&rfr_iscdi=true |