An adaptive finite element method for magnetohydrodynamics
We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolatio...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2007-07, Vol.225 (1), p.363-381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 1 |
container_start_page | 363 |
container_title | Journal of computational physics |
container_volume | 225 |
creator | Lankalapalli, S. Flaherty, J.E. Shephard, M.S. Strauss, H. |
description | We describe a procedure for the adaptive
h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations. |
doi_str_mv | 10.1016/j.jcp.2006.12.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30093699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199910600595X</els_id><sourcerecordid>30093699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9iywJZw7SR2DFNV8ZIqscBsOfYNdZRHsd1K_fekaiU2prt85xzdj5BbChkFyh_arDWbjAHwjLIMKJyRGQUJKROUn5MZAKOplJJekqsQWgCoyqKakcfFkGirN9HtMGnc4CIm2GGPQ0x6jOvRJs3ok15_DxjH9d760e4H3TsTrslFo7uAN6c7J18vz5_Lt3T18fq-XKxSk5dVTEvLqxosFRwEL5guqWG04RyFtiXkVc1QFEVd8MLoyha1EMAmgpuaQs0Y5nNyf-zd-PFniyGq3gWDXacHHLdB5QAy51JOID2Cxo8heGzUxrte-72ioA6WVKsmS-pgSVGmJktT5u5UroPRXeP1YFz4C1ayEBXnE_d05HD6dOfQq2AcDgat82iisqP7Z-UXgyt7yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30093699</pqid></control><display><type>article</type><title>An adaptive finite element method for magnetohydrodynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Lankalapalli, S. ; Flaherty, J.E. ; Shephard, M.S. ; Strauss, H.</creator><creatorcontrib>Lankalapalli, S. ; Flaherty, J.E. ; Shephard, M.S. ; Strauss, H.</creatorcontrib><description>We describe a procedure for the adaptive
h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.12.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adaptive h-refinement ; Computational techniques ; Exact sciences and technology ; Incompressible MHD ; Mathematical methods in physics ; Physics ; Stabilized finite element formulation</subject><ispartof>Journal of computational physics, 2007-07, Vol.225 (1), p.363-381</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</citedby><cites>FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199910600595X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18947866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lankalapalli, S.</creatorcontrib><creatorcontrib>Flaherty, J.E.</creatorcontrib><creatorcontrib>Shephard, M.S.</creatorcontrib><creatorcontrib>Strauss, H.</creatorcontrib><title>An adaptive finite element method for magnetohydrodynamics</title><title>Journal of computational physics</title><description>We describe a procedure for the adaptive
h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.</description><subject>Adaptive h-refinement</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Incompressible MHD</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Stabilized finite element formulation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9iywJZw7SR2DFNV8ZIqscBsOfYNdZRHsd1K_fekaiU2prt85xzdj5BbChkFyh_arDWbjAHwjLIMKJyRGQUJKROUn5MZAKOplJJekqsQWgCoyqKakcfFkGirN9HtMGnc4CIm2GGPQ0x6jOvRJs3ok15_DxjH9d760e4H3TsTrslFo7uAN6c7J18vz5_Lt3T18fq-XKxSk5dVTEvLqxosFRwEL5guqWG04RyFtiXkVc1QFEVd8MLoyha1EMAmgpuaQs0Y5nNyf-zd-PFniyGq3gWDXacHHLdB5QAy51JOID2Cxo8heGzUxrte-72ioA6WVKsmS-pgSVGmJktT5u5UroPRXeP1YFz4C1ayEBXnE_d05HD6dOfQq2AcDgat82iisqP7Z-UXgyt7yQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lankalapalli, S.</creator><creator>Flaherty, J.E.</creator><creator>Shephard, M.S.</creator><creator>Strauss, H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>An adaptive finite element method for magnetohydrodynamics</title><author>Lankalapalli, S. ; Flaherty, J.E. ; Shephard, M.S. ; Strauss, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive h-refinement</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Incompressible MHD</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Stabilized finite element formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lankalapalli, S.</creatorcontrib><creatorcontrib>Flaherty, J.E.</creatorcontrib><creatorcontrib>Shephard, M.S.</creatorcontrib><creatorcontrib>Strauss, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lankalapalli, S.</au><au>Flaherty, J.E.</au><au>Shephard, M.S.</au><au>Strauss, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive finite element method for magnetohydrodynamics</atitle><jtitle>Journal of computational physics</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>225</volume><issue>1</issue><spage>363</spage><epage>381</epage><pages>363-381</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We describe a procedure for the adaptive
h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.12.010</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2007-07, Vol.225 (1), p.363-381 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_30093699 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive h-refinement Computational techniques Exact sciences and technology Incompressible MHD Mathematical methods in physics Physics Stabilized finite element formulation |
title | An adaptive finite element method for magnetohydrodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20finite%20element%20method%20for%20magnetohydrodynamics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lankalapalli,%20S.&rft.date=2007-07-01&rft.volume=225&rft.issue=1&rft.spage=363&rft.epage=381&rft.pages=363-381&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.12.010&rft_dat=%3Cproquest_cross%3E30093699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30093699&rft_id=info:pmid/&rft_els_id=S002199910600595X&rfr_iscdi=true |