An adaptive finite element method for magnetohydrodynamics

We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2007-07, Vol.225 (1), p.363-381
Hauptverfasser: Lankalapalli, S., Flaherty, J.E., Shephard, M.S., Strauss, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 1
container_start_page 363
container_title Journal of computational physics
container_volume 225
creator Lankalapalli, S.
Flaherty, J.E.
Shephard, M.S.
Strauss, H.
description We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.
doi_str_mv 10.1016/j.jcp.2006.12.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30093699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199910600595X</els_id><sourcerecordid>30093699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9iywJZw7SR2DFNV8ZIqscBsOfYNdZRHsd1K_fekaiU2prt85xzdj5BbChkFyh_arDWbjAHwjLIMKJyRGQUJKROUn5MZAKOplJJekqsQWgCoyqKakcfFkGirN9HtMGnc4CIm2GGPQ0x6jOvRJs3ok15_DxjH9d760e4H3TsTrslFo7uAN6c7J18vz5_Lt3T18fq-XKxSk5dVTEvLqxosFRwEL5guqWG04RyFtiXkVc1QFEVd8MLoyha1EMAmgpuaQs0Y5nNyf-zd-PFniyGq3gWDXacHHLdB5QAy51JOID2Cxo8heGzUxrte-72ioA6WVKsmS-pgSVGmJktT5u5UroPRXeP1YFz4C1ayEBXnE_d05HD6dOfQq2AcDgat82iisqP7Z-UXgyt7yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30093699</pqid></control><display><type>article</type><title>An adaptive finite element method for magnetohydrodynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Lankalapalli, S. ; Flaherty, J.E. ; Shephard, M.S. ; Strauss, H.</creator><creatorcontrib>Lankalapalli, S. ; Flaherty, J.E. ; Shephard, M.S. ; Strauss, H.</creatorcontrib><description>We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.12.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adaptive h-refinement ; Computational techniques ; Exact sciences and technology ; Incompressible MHD ; Mathematical methods in physics ; Physics ; Stabilized finite element formulation</subject><ispartof>Journal of computational physics, 2007-07, Vol.225 (1), p.363-381</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</citedby><cites>FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199910600595X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18947866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lankalapalli, S.</creatorcontrib><creatorcontrib>Flaherty, J.E.</creatorcontrib><creatorcontrib>Shephard, M.S.</creatorcontrib><creatorcontrib>Strauss, H.</creatorcontrib><title>An adaptive finite element method for magnetohydrodynamics</title><title>Journal of computational physics</title><description>We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.</description><subject>Adaptive h-refinement</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Incompressible MHD</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Stabilized finite element formulation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9iywJZw7SR2DFNV8ZIqscBsOfYNdZRHsd1K_fekaiU2prt85xzdj5BbChkFyh_arDWbjAHwjLIMKJyRGQUJKROUn5MZAKOplJJekqsQWgCoyqKakcfFkGirN9HtMGnc4CIm2GGPQ0x6jOvRJs3ok15_DxjH9d760e4H3TsTrslFo7uAN6c7J18vz5_Lt3T18fq-XKxSk5dVTEvLqxosFRwEL5guqWG04RyFtiXkVc1QFEVd8MLoyha1EMAmgpuaQs0Y5nNyf-zd-PFniyGq3gWDXacHHLdB5QAy51JOID2Cxo8heGzUxrte-72ioA6WVKsmS-pgSVGmJktT5u5UroPRXeP1YFz4C1ayEBXnE_d05HD6dOfQq2AcDgat82iisqP7Z-UXgyt7yQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lankalapalli, S.</creator><creator>Flaherty, J.E.</creator><creator>Shephard, M.S.</creator><creator>Strauss, H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>An adaptive finite element method for magnetohydrodynamics</title><author>Lankalapalli, S. ; Flaherty, J.E. ; Shephard, M.S. ; Strauss, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5d68b0d17607642a51c21f66e7ad5038b2e744b464ca8d4b7702c216cb10b22e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive h-refinement</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Incompressible MHD</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Stabilized finite element formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lankalapalli, S.</creatorcontrib><creatorcontrib>Flaherty, J.E.</creatorcontrib><creatorcontrib>Shephard, M.S.</creatorcontrib><creatorcontrib>Strauss, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lankalapalli, S.</au><au>Flaherty, J.E.</au><au>Shephard, M.S.</au><au>Strauss, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive finite element method for magnetohydrodynamics</atitle><jtitle>Journal of computational physics</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>225</volume><issue>1</issue><spage>363</spage><epage>381</epage><pages>363-381</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors are small relative to spatial errors. The adaptive procedure is applied to study singular current sheets in the tilt instability problem of ideal magnetohydrodynamics. Numerical results indicate a more accurate resolution of current sheets with higher-order methods than with piecewise-linear approximations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.12.010</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2007-07, Vol.225 (1), p.363-381
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_30093699
source Elsevier ScienceDirect Journals
subjects Adaptive h-refinement
Computational techniques
Exact sciences and technology
Incompressible MHD
Mathematical methods in physics
Physics
Stabilized finite element formulation
title An adaptive finite element method for magnetohydrodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20finite%20element%20method%20for%20magnetohydrodynamics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lankalapalli,%20S.&rft.date=2007-07-01&rft.volume=225&rft.issue=1&rft.spage=363&rft.epage=381&rft.pages=363-381&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.12.010&rft_dat=%3Cproquest_cross%3E30093699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30093699&rft_id=info:pmid/&rft_els_id=S002199910600595X&rfr_iscdi=true