Particle detection optimization by means of a distributed evolutionary algorithm
This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is for...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2007-08, Vol.18 (8), p.2472-2476, Article 2472 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2476 |
---|---|
container_issue | 8 |
container_start_page | 2472 |
container_title | Measurement science & technology |
container_volume | 18 |
creator | Padée, Adam Zaremba, Krzysztof Kurek, Krzysztof |
description | This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction. |
doi_str_mv | 10.1088/0957-0233/18/8/023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30087284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30087284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFNOgoe1k6TZzR6l-A8K9qDnkE2yGtlt1iQr1E_vbiseLPQ0M_B7b2YeQpcEbggIMYOSFxlQxmZEzIaRsiM0ISwnWc6BHKPJH3CKzmL8AIACynKCVisVktONxcYmq5Pza-y75Fr3rbZDtcGtVeuIfY0VNi6m4Ko-WYPtl2_6kVFhg1Xz5oNL7-05OqlVE-3Fb52i1_u7l8Vjtnx-eFrcLjPNOKRM11SbUuW6tJqUhcnBckY1V5ZQS_ncFLqqBFGlYVzVXFS0GB7JDYCui3lesim62vl2wX_2NibZuqht06i19X2UDEAUVMwHkO5AHXyMwdayC64dbpYE5BieHLORYzaSCCm23RSJfyLt0jaQFJRrDkuvd1Lnu79V-5zsTD2w2T57wPsHXeKP6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30087284</pqid></control><display><type>article</type><title>Particle detection optimization by means of a distributed evolutionary algorithm</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Padée, Adam ; Zaremba, Krzysztof ; Kurek, Krzysztof</creator><creatorcontrib>Padée, Adam ; Zaremba, Krzysztof ; Kurek, Krzysztof</creatorcontrib><description>This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/18/8/023</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Measurement science & technology, 2007-08, Vol.18 (8), p.2472-2476, Article 2472</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</citedby><cites>FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/18/8/023/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53811,53891</link.rule.ids></links><search><creatorcontrib>Padée, Adam</creatorcontrib><creatorcontrib>Zaremba, Krzysztof</creatorcontrib><creatorcontrib>Kurek, Krzysztof</creatorcontrib><title>Particle detection optimization by means of a distributed evolutionary algorithm</title><title>Measurement science & technology</title><description>This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFNOgoe1k6TZzR6l-A8K9qDnkE2yGtlt1iQr1E_vbiseLPQ0M_B7b2YeQpcEbggIMYOSFxlQxmZEzIaRsiM0ISwnWc6BHKPJH3CKzmL8AIACynKCVisVktONxcYmq5Pza-y75Fr3rbZDtcGtVeuIfY0VNi6m4Ko-WYPtl2_6kVFhg1Xz5oNL7-05OqlVE-3Fb52i1_u7l8Vjtnx-eFrcLjPNOKRM11SbUuW6tJqUhcnBckY1V5ZQS_ncFLqqBFGlYVzVXFS0GB7JDYCui3lesim62vl2wX_2NibZuqht06i19X2UDEAUVMwHkO5AHXyMwdayC64dbpYE5BieHLORYzaSCCm23RSJfyLt0jaQFJRrDkuvd1Lnu79V-5zsTD2w2T57wPsHXeKP6A</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Padée, Adam</creator><creator>Zaremba, Krzysztof</creator><creator>Kurek, Krzysztof</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Particle detection optimization by means of a distributed evolutionary algorithm</title><author>Padée, Adam ; Zaremba, Krzysztof ; Kurek, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padée, Adam</creatorcontrib><creatorcontrib>Zaremba, Krzysztof</creatorcontrib><creatorcontrib>Kurek, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padée, Adam</au><au>Zaremba, Krzysztof</au><au>Kurek, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle detection optimization by means of a distributed evolutionary algorithm</atitle><jtitle>Measurement science & technology</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>18</volume><issue>8</issue><spage>2472</spage><epage>2476</epage><pages>2472-2476</pages><artnum>2472</artnum><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/18/8/023</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2007-08, Vol.18 (8), p.2472-2476, Article 2472 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_proquest_miscellaneous_30087284 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Particle detection optimization by means of a distributed evolutionary algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20detection%20optimization%20by%20means%20of%20a%20distributed%20evolutionary%20algorithm&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Pad%C3%A9e,%20Adam&rft.date=2007-08-01&rft.volume=18&rft.issue=8&rft.spage=2472&rft.epage=2476&rft.pages=2472-2476&rft.artnum=2472&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/0957-0233/18/8/023&rft_dat=%3Cproquest_cross%3E30087284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30087284&rft_id=info:pmid/&rfr_iscdi=true |