Particle detection optimization by means of a distributed evolutionary algorithm

This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2007-08, Vol.18 (8), p.2472-2476, Article 2472
Hauptverfasser: Padée, Adam, Zaremba, Krzysztof, Kurek, Krzysztof
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2476
container_issue 8
container_start_page 2472
container_title Measurement science & technology
container_volume 18
creator Padée, Adam
Zaremba, Krzysztof
Kurek, Krzysztof
description This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.
doi_str_mv 10.1088/0957-0233/18/8/023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30087284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30087284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFNOgoe1k6TZzR6l-A8K9qDnkE2yGtlt1iQr1E_vbiseLPQ0M_B7b2YeQpcEbggIMYOSFxlQxmZEzIaRsiM0ISwnWc6BHKPJH3CKzmL8AIACynKCVisVktONxcYmq5Pza-y75Fr3rbZDtcGtVeuIfY0VNi6m4Ko-WYPtl2_6kVFhg1Xz5oNL7-05OqlVE-3Fb52i1_u7l8Vjtnx-eFrcLjPNOKRM11SbUuW6tJqUhcnBckY1V5ZQS_ncFLqqBFGlYVzVXFS0GB7JDYCui3lesim62vl2wX_2NibZuqht06i19X2UDEAUVMwHkO5AHXyMwdayC64dbpYE5BieHLORYzaSCCm23RSJfyLt0jaQFJRrDkuvd1Lnu79V-5zsTD2w2T57wPsHXeKP6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30087284</pqid></control><display><type>article</type><title>Particle detection optimization by means of a distributed evolutionary algorithm</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Padée, Adam ; Zaremba, Krzysztof ; Kurek, Krzysztof</creator><creatorcontrib>Padée, Adam ; Zaremba, Krzysztof ; Kurek, Krzysztof</creatorcontrib><description>This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/18/8/023</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Measurement science &amp; technology, 2007-08, Vol.18 (8), p.2472-2476, Article 2472</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</citedby><cites>FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/18/8/023/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53811,53891</link.rule.ids></links><search><creatorcontrib>Padée, Adam</creatorcontrib><creatorcontrib>Zaremba, Krzysztof</creatorcontrib><creatorcontrib>Kurek, Krzysztof</creatorcontrib><title>Particle detection optimization by means of a distributed evolutionary algorithm</title><title>Measurement science &amp; technology</title><description>This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFNOgoe1k6TZzR6l-A8K9qDnkE2yGtlt1iQr1E_vbiseLPQ0M_B7b2YeQpcEbggIMYOSFxlQxmZEzIaRsiM0ISwnWc6BHKPJH3CKzmL8AIACynKCVisVktONxcYmq5Pza-y75Fr3rbZDtcGtVeuIfY0VNi6m4Ko-WYPtl2_6kVFhg1Xz5oNL7-05OqlVE-3Fb52i1_u7l8Vjtnx-eFrcLjPNOKRM11SbUuW6tJqUhcnBckY1V5ZQS_ncFLqqBFGlYVzVXFS0GB7JDYCui3lesim62vl2wX_2NibZuqht06i19X2UDEAUVMwHkO5AHXyMwdayC64dbpYE5BieHLORYzaSCCm23RSJfyLt0jaQFJRrDkuvd1Lnu79V-5zsTD2w2T57wPsHXeKP6A</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Padée, Adam</creator><creator>Zaremba, Krzysztof</creator><creator>Kurek, Krzysztof</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Particle detection optimization by means of a distributed evolutionary algorithm</title><author>Padée, Adam ; Zaremba, Krzysztof ; Kurek, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cf2cd9a6c9ec197d60e532c5ae12e254d7cbb81a9d35af58b275016d00cf74693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padée, Adam</creatorcontrib><creatorcontrib>Zaremba, Krzysztof</creatorcontrib><creatorcontrib>Kurek, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padée, Adam</au><au>Zaremba, Krzysztof</au><au>Kurek, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle detection optimization by means of a distributed evolutionary algorithm</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>18</volume><issue>8</issue><spage>2472</spage><epage>2476</epage><pages>2472-2476</pages><artnum>2472</artnum><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>This paper presents an approach to optimize the reconstruction of particle tracks in a large area spectrometer using an evolutionary algorithm. First, the basic concepts of the measurement of the momentum are presented, including some details on the track reconstruction. An objective function is formulated to measure the efficiency of the reconstruction. Then, the optimizer is described in two versions: sequential for a single CPU and distributed for a cluster of PCs. The architecture of both of them is presented in detail, including the description of the operators used plus some words on the infrastructure required for the distributed version. Finally, the results from the tests of the program are presented, from which the conclusion is drawn that the distributed genetic algorithm, easy to implement on high energy physics data processing clusters, may be helpful in improving the efficiency of the reconstruction.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/18/8/023</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2007-08, Vol.18 (8), p.2472-2476, Article 2472
issn 0957-0233
1361-6501
language eng
recordid cdi_proquest_miscellaneous_30087284
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Particle detection optimization by means of a distributed evolutionary algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20detection%20optimization%20by%20means%20of%20a%20distributed%20evolutionary%20algorithm&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Pad%C3%A9e,%20Adam&rft.date=2007-08-01&rft.volume=18&rft.issue=8&rft.spage=2472&rft.epage=2476&rft.pages=2472-2476&rft.artnum=2472&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/0957-0233/18/8/023&rft_dat=%3Cproquest_cross%3E30087284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30087284&rft_id=info:pmid/&rfr_iscdi=true