Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling
A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor a...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2007-08, Vol.62 (16), p.4294-4303 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4303 |
---|---|
container_issue | 16 |
container_start_page | 4294 |
container_title | Chemical engineering science |
container_volume | 62 |
creator | Mei, Hong Li, Chengyue Ji, Shengfu Liu, Hui |
description | A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit. |
doi_str_mv | 10.1016/j.ces.2007.05.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30086514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907004071</els_id><sourcerecordid>30086514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EJZbCA3DzBW5Jx4m9icUJVRSQinopZ-NMJtSrJF5sL1JvvEPfkCdhVlupNziMRmN_88_ML8QbBbUCtb3Y1Ui5bgC6GkwNSj0TG9V3baU1mOdiAwC2agzYF-Jlzjsuu07BRnz_Gkeaw_pDxkl6uVDxs1ziGudQ7iR6Lu9LQJnIY4lJThwM3fmVZC7kF_7ht4UV_vx-wLgMh1xCXCXGw_6o-0qcTX7O9Poxn4tvVx9vLz9X1zefvlx-uK5Q26ZUirylrueNPakWtxP2oGlAQ2CG1tvOK2gHzRdg1zSEbWPs0CitjTWjH1V7Lt6ddPcp_jxQLm4JGWmeedN4yK4F6LdG6f-CDegWWJhBdQIxxZz5TLdPYfHp3ilwR9PdzrHp7mi6A-PYdO55-yjuM_p5Sn7FkJ8ae6stbA1z708csSW_AiWXMdCKNIZEWNwYwz-m_AXEmpjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20430144</pqid></control><display><type>article</type><title>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mei, Hong ; Li, Chengyue ; Ji, Shengfu ; Liu, Hui</creator><creatorcontrib>Mei, Hong ; Li, Chengyue ; Ji, Shengfu ; Liu, Hui</creatorcontrib><description>A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2007.05.011</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Autothermal coupling ; Catalysis ; Catalytic reactions ; Catalytic reactors ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Heat and mass transfer. Packings, plates ; Heat exchangers and evaporators ; Mathematical modeling ; Monolith catalyst ; Parameter analysis ; Performance simulation ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemical engineering science, 2007-08, Vol.62 (16), p.4294-4303</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</citedby><cites>FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250907004071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18949065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Hong</creatorcontrib><creatorcontrib>Li, Chengyue</creatorcontrib><creatorcontrib>Ji, Shengfu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><title>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</title><title>Chemical engineering science</title><description>A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.</description><subject>Applied sciences</subject><subject>Autothermal coupling</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Catalytic reactors</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat exchangers and evaporators</subject><subject>Mathematical modeling</subject><subject>Monolith catalyst</subject><subject>Parameter analysis</subject><subject>Performance simulation</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EJZbCA3DzBW5Jx4m9icUJVRSQinopZ-NMJtSrJF5sL1JvvEPfkCdhVlupNziMRmN_88_ML8QbBbUCtb3Y1Ui5bgC6GkwNSj0TG9V3baU1mOdiAwC2agzYF-Jlzjsuu07BRnz_Gkeaw_pDxkl6uVDxs1ziGudQ7iR6Lu9LQJnIY4lJThwM3fmVZC7kF_7ht4UV_vx-wLgMh1xCXCXGw_6o-0qcTX7O9Poxn4tvVx9vLz9X1zefvlx-uK5Q26ZUirylrueNPakWtxP2oGlAQ2CG1tvOK2gHzRdg1zSEbWPs0CitjTWjH1V7Lt6ddPcp_jxQLm4JGWmeedN4yK4F6LdG6f-CDegWWJhBdQIxxZz5TLdPYfHp3ilwR9PdzrHp7mi6A-PYdO55-yjuM_p5Sn7FkJ8ae6stbA1z708csSW_AiWXMdCKNIZEWNwYwz-m_AXEmpjA</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Mei, Hong</creator><creator>Li, Chengyue</creator><creator>Ji, Shengfu</creator><creator>Liu, Hui</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20070801</creationdate><title>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</title><author>Mei, Hong ; Li, Chengyue ; Ji, Shengfu ; Liu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Autothermal coupling</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Catalytic reactors</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat exchangers and evaporators</topic><topic>Mathematical modeling</topic><topic>Monolith catalyst</topic><topic>Parameter analysis</topic><topic>Performance simulation</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Hong</creatorcontrib><creatorcontrib>Li, Chengyue</creatorcontrib><creatorcontrib>Ji, Shengfu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Hong</au><au>Li, Chengyue</au><au>Ji, Shengfu</au><au>Liu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</atitle><jtitle>Chemical engineering science</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>62</volume><issue>16</issue><spage>4294</spage><epage>4303</epage><pages>4294-4303</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2007.05.011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2007-08, Vol.62 (16), p.4294-4303 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_30086514 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Autothermal coupling Catalysis Catalytic reactions Catalytic reactors Chemical engineering Chemistry Exact sciences and technology General and physical chemistry Heat and mass transfer. Packings, plates Heat exchangers and evaporators Mathematical modeling Monolith catalyst Parameter analysis Performance simulation Reactors Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20metal%20monolith%20catalytic%20reactor%20for%20methane%20steam%20reforming%E2%80%93combustion%20coupling&rft.jtitle=Chemical%20engineering%20science&rft.au=Mei,%20Hong&rft.date=2007-08-01&rft.volume=62&rft.issue=16&rft.spage=4294&rft.epage=4303&rft.pages=4294-4303&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2007.05.011&rft_dat=%3Cproquest_cross%3E30086514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20430144&rft_id=info:pmid/&rft_els_id=S0009250907004071&rfr_iscdi=true |