Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling

A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2007-08, Vol.62 (16), p.4294-4303
Hauptverfasser: Mei, Hong, Li, Chengyue, Ji, Shengfu, Liu, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4303
container_issue 16
container_start_page 4294
container_title Chemical engineering science
container_volume 62
creator Mei, Hong
Li, Chengyue
Ji, Shengfu
Liu, Hui
description A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.
doi_str_mv 10.1016/j.ces.2007.05.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30086514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907004071</els_id><sourcerecordid>30086514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EJZbCA3DzBW5Jx4m9icUJVRSQinopZ-NMJtSrJF5sL1JvvEPfkCdhVlupNziMRmN_88_ML8QbBbUCtb3Y1Ui5bgC6GkwNSj0TG9V3baU1mOdiAwC2agzYF-Jlzjsuu07BRnz_Gkeaw_pDxkl6uVDxs1ziGudQ7iR6Lu9LQJnIY4lJThwM3fmVZC7kF_7ht4UV_vx-wLgMh1xCXCXGw_6o-0qcTX7O9Poxn4tvVx9vLz9X1zefvlx-uK5Q26ZUirylrueNPakWtxP2oGlAQ2CG1tvOK2gHzRdg1zSEbWPs0CitjTWjH1V7Lt6ddPcp_jxQLm4JGWmeedN4yK4F6LdG6f-CDegWWJhBdQIxxZz5TLdPYfHp3ilwR9PdzrHp7mi6A-PYdO55-yjuM_p5Sn7FkJ8ae6stbA1z708csSW_AiWXMdCKNIZEWNwYwz-m_AXEmpjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20430144</pqid></control><display><type>article</type><title>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mei, Hong ; Li, Chengyue ; Ji, Shengfu ; Liu, Hui</creator><creatorcontrib>Mei, Hong ; Li, Chengyue ; Ji, Shengfu ; Liu, Hui</creatorcontrib><description>A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2007.05.011</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Autothermal coupling ; Catalysis ; Catalytic reactions ; Catalytic reactors ; Chemical engineering ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Heat and mass transfer. Packings, plates ; Heat exchangers and evaporators ; Mathematical modeling ; Monolith catalyst ; Parameter analysis ; Performance simulation ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemical engineering science, 2007-08, Vol.62 (16), p.4294-4303</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</citedby><cites>FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250907004071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18949065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Hong</creatorcontrib><creatorcontrib>Li, Chengyue</creatorcontrib><creatorcontrib>Ji, Shengfu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><title>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</title><title>Chemical engineering science</title><description>A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.</description><subject>Applied sciences</subject><subject>Autothermal coupling</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Catalytic reactors</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat exchangers and evaporators</subject><subject>Mathematical modeling</subject><subject>Monolith catalyst</subject><subject>Parameter analysis</subject><subject>Performance simulation</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EJZbCA3DzBW5Jx4m9icUJVRSQinopZ-NMJtSrJF5sL1JvvEPfkCdhVlupNziMRmN_88_ML8QbBbUCtb3Y1Ui5bgC6GkwNSj0TG9V3baU1mOdiAwC2agzYF-Jlzjsuu07BRnz_Gkeaw_pDxkl6uVDxs1ziGudQ7iR6Lu9LQJnIY4lJThwM3fmVZC7kF_7ht4UV_vx-wLgMh1xCXCXGw_6o-0qcTX7O9Poxn4tvVx9vLz9X1zefvlx-uK5Q26ZUirylrueNPakWtxP2oGlAQ2CG1tvOK2gHzRdg1zSEbWPs0CitjTWjH1V7Lt6ddPcp_jxQLm4JGWmeedN4yK4F6LdG6f-CDegWWJhBdQIxxZz5TLdPYfHp3ilwR9PdzrHp7mi6A-PYdO55-yjuM_p5Sn7FkJ8ae6stbA1z708csSW_AiWXMdCKNIZEWNwYwz-m_AXEmpjA</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Mei, Hong</creator><creator>Li, Chengyue</creator><creator>Ji, Shengfu</creator><creator>Liu, Hui</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20070801</creationdate><title>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</title><author>Mei, Hong ; Li, Chengyue ; Ji, Shengfu ; Liu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-1ea9e78873ae13c6fc804ebc5e05b3a97a103b4250c722ec3259b2144595dad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Autothermal coupling</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Catalytic reactors</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat exchangers and evaporators</topic><topic>Mathematical modeling</topic><topic>Monolith catalyst</topic><topic>Parameter analysis</topic><topic>Performance simulation</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Hong</creatorcontrib><creatorcontrib>Li, Chengyue</creatorcontrib><creatorcontrib>Ji, Shengfu</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Hong</au><au>Li, Chengyue</au><au>Ji, Shengfu</au><au>Liu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling</atitle><jtitle>Chemical engineering science</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>62</volume><issue>16</issue><spage>4294</spage><epage>4303</epage><pages>4294-4303</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>A novel metal monolith reactor for coupling methane steam reforming with catalytic combustion is proposed in this work, the metal monolith is used as a co-current heat exchanger and the catalysts are deposited on channel walls of the monolith. The transport and reaction performances of the reactor are numerically studied utilizing heterogeneous model based on the whole reactor. The influence of the operating conditions like feed gas velocity, temperature and composition are predicted to be significant and they must be carefully adjusted in order to avoid hot spots or insufficient methane conversion. To improve reactor performance, several different channel arrangements and catalyst distribution modes in the monolith are designed and simulated. It is demonstrated that reasonable reactor configuration, structure parameters and catalyst distribution can considerably enhance heat transfer and increase the methane conversion, resulting in a compact and intensified unit.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2007.05.011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2007-08, Vol.62 (16), p.4294-4303
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_30086514
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Autothermal coupling
Catalysis
Catalytic reactions
Catalytic reactors
Chemical engineering
Chemistry
Exact sciences and technology
General and physical chemistry
Heat and mass transfer. Packings, plates
Heat exchangers and evaporators
Mathematical modeling
Monolith catalyst
Parameter analysis
Performance simulation
Reactors
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20metal%20monolith%20catalytic%20reactor%20for%20methane%20steam%20reforming%E2%80%93combustion%20coupling&rft.jtitle=Chemical%20engineering%20science&rft.au=Mei,%20Hong&rft.date=2007-08-01&rft.volume=62&rft.issue=16&rft.spage=4294&rft.epage=4303&rft.pages=4294-4303&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2007.05.011&rft_dat=%3Cproquest_cross%3E30086514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20430144&rft_id=info:pmid/&rft_els_id=S0009250907004071&rfr_iscdi=true