Image-based spectral reflectance reconstruction using the matrix R method
The ultimate goal of spectral imaging is to achieve high spectral accuracy, so that the spectral information can be used to calculate colorimetrically accurate images for any combination of illuminant and observer. A new spectral reconstruction method, called the matrix R method, was developed to re...
Gespeichert in:
Veröffentlicht in: | Color research and application 2007-10, Vol.32 (5), p.343-351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 5 |
container_start_page | 343 |
container_title | Color research and application |
container_volume | 32 |
creator | Zhao, Yonghui Berns, Roy S. |
description | The ultimate goal of spectral imaging is to achieve high spectral accuracy, so that the spectral information can be used to calculate colorimetrically accurate images for any combination of illuminant and observer. A new spectral reconstruction method, called the matrix R method, was developed to reconstruct spectral reflectance factor accurately while simultaneously achieving high colorimetric performance for a defined illuminant and observer. The method combines the benefits of both colorimetric and spectral transformations. Tristimulus values were predicted by a colorimetric transformation from multi‐channel camera signals, while spectral reflectance factor was estimated by a spectral transformation from the same signals. The method reconstructed reflectance factor by combining the fundamental stimulus from the predicted tristimulus values with the metameric black from the estimated spectral reflectance, based on the Wyszecki hypothesis. The experimental results verified the new method as a promising technique for building a spectral image database. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 343–351, 2007 |
doi_str_mv | 10.1002/col.20341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30074499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30074499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3191-3aaf253ba571b6c45cee30731264f5576c13463f83283e653d8f2ea0154c977b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A-yQmKR1s7EdrJEFS0VBSTEQ2JjOe6kDeRRbEe0f08gwI7V3MU5V5pLyCmjI0ZpNDZNOYooxGyPDBiPaChAJvtkQEGwMAImD8mRc6-UUg6JHJD5vNIrDDPtcBm4DRpvdRlYzMsu6tpgl01TO29b44umDlpX1KvArzGotLfFNrgPKvTrZnlMDnJdOjz5uUPyOL18mFyFi7vZfHKxCA2wlIWgdR5xyDSXLBMm5gYRqAQWiTjnXArDIBaQJxAlgILDMskj1JTx2KRSZjAkZ33vxjbvLTqvqsIZLEtdY9M6BZTKOE7TDjzvQWMb57qX1MYWlbY7xaj6Gkt1Y6nvsTp23LMfRYm7_0E1uVv8GmFvFM7j9s_Q9k0JCZKr59uZYvLm5WnatVzDJ5DTebA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30074499</pqid></control><display><type>article</type><title>Image-based spectral reflectance reconstruction using the matrix R method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Yonghui ; Berns, Roy S.</creator><creatorcontrib>Zhao, Yonghui ; Berns, Roy S.</creatorcontrib><description>The ultimate goal of spectral imaging is to achieve high spectral accuracy, so that the spectral information can be used to calculate colorimetrically accurate images for any combination of illuminant and observer. A new spectral reconstruction method, called the matrix R method, was developed to reconstruct spectral reflectance factor accurately while simultaneously achieving high colorimetric performance for a defined illuminant and observer. The method combines the benefits of both colorimetric and spectral transformations. Tristimulus values were predicted by a colorimetric transformation from multi‐channel camera signals, while spectral reflectance factor was estimated by a spectral transformation from the same signals. The method reconstructed reflectance factor by combining the fundamental stimulus from the predicted tristimulus values with the metameric black from the estimated spectral reflectance, based on the Wyszecki hypothesis. The experimental results verified the new method as a promising technique for building a spectral image database. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 343–351, 2007</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.20341</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>matrix R ; metamerism ; spectral imaging ; Wyszecki hypothesis</subject><ispartof>Color research and application, 2007-10, Vol.32 (5), p.343-351</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3191-3aaf253ba571b6c45cee30731264f5576c13463f83283e653d8f2ea0154c977b3</citedby><cites>FETCH-LOGICAL-c3191-3aaf253ba571b6c45cee30731264f5576c13463f83283e653d8f2ea0154c977b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcol.20341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcol.20341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Yonghui</creatorcontrib><creatorcontrib>Berns, Roy S.</creatorcontrib><title>Image-based spectral reflectance reconstruction using the matrix R method</title><title>Color research and application</title><addtitle>Color Res. Appl</addtitle><description>The ultimate goal of spectral imaging is to achieve high spectral accuracy, so that the spectral information can be used to calculate colorimetrically accurate images for any combination of illuminant and observer. A new spectral reconstruction method, called the matrix R method, was developed to reconstruct spectral reflectance factor accurately while simultaneously achieving high colorimetric performance for a defined illuminant and observer. The method combines the benefits of both colorimetric and spectral transformations. Tristimulus values were predicted by a colorimetric transformation from multi‐channel camera signals, while spectral reflectance factor was estimated by a spectral transformation from the same signals. The method reconstructed reflectance factor by combining the fundamental stimulus from the predicted tristimulus values with the metameric black from the estimated spectral reflectance, based on the Wyszecki hypothesis. The experimental results verified the new method as a promising technique for building a spectral image database. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 343–351, 2007</description><subject>matrix R</subject><subject>metamerism</subject><subject>spectral imaging</subject><subject>Wyszecki hypothesis</subject><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A-yQmKR1s7EdrJEFS0VBSTEQ2JjOe6kDeRRbEe0f08gwI7V3MU5V5pLyCmjI0ZpNDZNOYooxGyPDBiPaChAJvtkQEGwMAImD8mRc6-UUg6JHJD5vNIrDDPtcBm4DRpvdRlYzMsu6tpgl01TO29b44umDlpX1KvArzGotLfFNrgPKvTrZnlMDnJdOjz5uUPyOL18mFyFi7vZfHKxCA2wlIWgdR5xyDSXLBMm5gYRqAQWiTjnXArDIBaQJxAlgILDMskj1JTx2KRSZjAkZ33vxjbvLTqvqsIZLEtdY9M6BZTKOE7TDjzvQWMb57qX1MYWlbY7xaj6Gkt1Y6nvsTp23LMfRYm7_0E1uVv8GmFvFM7j9s_Q9k0JCZKr59uZYvLm5WnatVzDJ5DTebA</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Zhao, Yonghui</creator><creator>Berns, Roy S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200710</creationdate><title>Image-based spectral reflectance reconstruction using the matrix R method</title><author>Zhao, Yonghui ; Berns, Roy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3191-3aaf253ba571b6c45cee30731264f5576c13463f83283e653d8f2ea0154c977b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>matrix R</topic><topic>metamerism</topic><topic>spectral imaging</topic><topic>Wyszecki hypothesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yonghui</creatorcontrib><creatorcontrib>Berns, Roy S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yonghui</au><au>Berns, Roy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-based spectral reflectance reconstruction using the matrix R method</atitle><jtitle>Color research and application</jtitle><addtitle>Color Res. Appl</addtitle><date>2007-10</date><risdate>2007</risdate><volume>32</volume><issue>5</issue><spage>343</spage><epage>351</epage><pages>343-351</pages><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>The ultimate goal of spectral imaging is to achieve high spectral accuracy, so that the spectral information can be used to calculate colorimetrically accurate images for any combination of illuminant and observer. A new spectral reconstruction method, called the matrix R method, was developed to reconstruct spectral reflectance factor accurately while simultaneously achieving high colorimetric performance for a defined illuminant and observer. The method combines the benefits of both colorimetric and spectral transformations. Tristimulus values were predicted by a colorimetric transformation from multi‐channel camera signals, while spectral reflectance factor was estimated by a spectral transformation from the same signals. The method reconstructed reflectance factor by combining the fundamental stimulus from the predicted tristimulus values with the metameric black from the estimated spectral reflectance, based on the Wyszecki hypothesis. The experimental results verified the new method as a promising technique for building a spectral image database. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 343–351, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/col.20341</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-2317 |
ispartof | Color research and application, 2007-10, Vol.32 (5), p.343-351 |
issn | 0361-2317 1520-6378 |
language | eng |
recordid | cdi_proquest_miscellaneous_30074499 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | matrix R metamerism spectral imaging Wyszecki hypothesis |
title | Image-based spectral reflectance reconstruction using the matrix R method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-based%20spectral%20reflectance%20reconstruction%20using%20the%20matrix%20R%20method&rft.jtitle=Color%20research%20and%20application&rft.au=Zhao,%20Yonghui&rft.date=2007-10&rft.volume=32&rft.issue=5&rft.spage=343&rft.epage=351&rft.pages=343-351&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.20341&rft_dat=%3Cproquest_cross%3E30074499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30074499&rft_id=info:pmid/&rfr_iscdi=true |