Influence of Mechanical Deformation at Tg on the Magnetic Properties in Fe-Based Bulk Metallic Glassy (FeCoZrMoWB) Alloy
Mechanical deformation effect on the magnetic properties in a bulk metallic glass (BMG) Fe60Co8Zr10Mo5W2B15 alloy at its glass transition temperature (Tg) was studied to investigate the possibility of some influence on the micro, nano-structure and magnetic properties of Fe-based BMG. Three differen...
Gespeichert in:
Veröffentlicht in: | Journal of the Japan Institute of Metals and Materials 2007, Vol.71(7), pp.553-558 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 7 |
container_start_page | 553 |
container_title | Journal of the Japan Institute of Metals and Materials |
container_volume | 71 |
creator | Hashimoto, Kenji Kubota, Takeshi Mashiko, Tuyoshi Okazaki, Teiko Furuya, Yasubumi Inoue, Akihisa |
description | Mechanical deformation effect on the magnetic properties in a bulk metallic glass (BMG) Fe60Co8Zr10Mo5W2B15 alloy at its glass transition temperature (Tg) was studied to investigate the possibility of some influence on the micro, nano-structure and magnetic properties of Fe-based BMG. Three different mechanical strains of 5, 10 and 20% were applied to specimens at Tg (=882 K). From the results by vibrating sample magnetometer (VSM) measurement, magnetic susceptibility (χ) and coercive force (Hc) were low in as-cast material, on the other hand, in the samples after strains of 10% and 20%, both χ and Hc increased very much. Transmission electron microscope (TEM) observation shows that very small crystalline precipitations with grain size of several nm order appeared and it's volume fraction gradually increases in the deformed samples. The morphological change seen in the selected area electron diffraction (SAED) pattern was well agreed with the changing tendency of the X-ray diffraction (XRD) analysis. Barkhausen noise (BHN) pulse voltage which is directly related to the dynamic behavior (i.e. magnetic pinning effect) of magnetic domains' movements increased with increasing the strain and BHN outbreak timing moved to higher magnetization level. These behaviors seem to correspond with the increase in Hc and χ. Therefore, a suitable deformation conditions (i.e. the amount of strain and temperature) at Tg should be chosen to maintain the excellent magnetic characteristics in Fe-BMG. |
doi_str_mv | 10.2320/jinstmet.71.553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30066643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30066643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2713-d9251d33ef9484e3ec119fb9db3f261c6e1329b1fc0536ca21d31a74b55a67a83</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVJISbJuVdBoSSHdaTVrrR7jJ04DcS0h4RCLkIrjxy5suRIWoj_fRTcBtrLzMB87zHMQ-gLJdOa1eRyY33KW8hTQadtyz6hCe06UvFSjtCEkJpWTSf4MTpLyQ6EkJ5TTvoJer3zxo3gNeBg8BL0s_JWK4evwYS4VdkGj1XGD2tchvwMeKnWHrLV-GcMO4jZQsLW4wVUM5VghWej-12MsnKuQLdOpbTH5wuYh6e4DL9mF_jKubA_RZ-NcgnO_vQT9Li4eZh_r-5_3N7Nr-4rXQvKqlVft3TFGJi-6RpgoCntzdCvBmZqTjUHyup-oEaTlnGt6gJTJZqhbRUXqmMn6NvBdxfDywgpy61NGpxTHsKYJCOEc96wAn79D9yEMfpym6QNE5yJriGFujxQOoaUIhi5i3ar4l5SIt-jkH-jkILKEkVRXB8Um5TVGj54VV6nHfzDi0Mpso91CSRK8OwNQryWZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437637840</pqid></control><display><type>article</type><title>Influence of Mechanical Deformation at Tg on the Magnetic Properties in Fe-Based Bulk Metallic Glassy (FeCoZrMoWB) Alloy</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hashimoto, Kenji ; Kubota, Takeshi ; Mashiko, Tuyoshi ; Okazaki, Teiko ; Furuya, Yasubumi ; Inoue, Akihisa</creator><creatorcontrib>Hashimoto, Kenji ; Kubota, Takeshi ; Mashiko, Tuyoshi ; Okazaki, Teiko ; Furuya, Yasubumi ; Inoue, Akihisa</creatorcontrib><description>Mechanical deformation effect on the magnetic properties in a bulk metallic glass (BMG) Fe60Co8Zr10Mo5W2B15 alloy at its glass transition temperature (Tg) was studied to investigate the possibility of some influence on the micro, nano-structure and magnetic properties of Fe-based BMG. Three different mechanical strains of 5, 10 and 20% were applied to specimens at Tg (=882 K). From the results by vibrating sample magnetometer (VSM) measurement, magnetic susceptibility (χ) and coercive force (Hc) were low in as-cast material, on the other hand, in the samples after strains of 10% and 20%, both χ and Hc increased very much. Transmission electron microscope (TEM) observation shows that very small crystalline precipitations with grain size of several nm order appeared and it's volume fraction gradually increases in the deformed samples. The morphological change seen in the selected area electron diffraction (SAED) pattern was well agreed with the changing tendency of the X-ray diffraction (XRD) analysis. Barkhausen noise (BHN) pulse voltage which is directly related to the dynamic behavior (i.e. magnetic pinning effect) of magnetic domains' movements increased with increasing the strain and BHN outbreak timing moved to higher magnetization level. These behaviors seem to correspond with the increase in Hc and χ. Therefore, a suitable deformation conditions (i.e. the amount of strain and temperature) at Tg should be chosen to maintain the excellent magnetic characteristics in Fe-BMG.</description><identifier>ISSN: 0021-4876</identifier><identifier>EISSN: 1880-6880</identifier><identifier>DOI: 10.2320/jinstmet.71.553</identifier><language>eng ; jpn</language><publisher>Sendai: The Japan Institute of Metals and Materials</publisher><subject>Amorphous materials ; Barkhausen effect ; Barkhausen noise (BHN) ; bulk metallic glass ; Coercivity ; Deformation ; Deformation effects ; Diffraction patterns ; Electron diffraction ; Glass transition temperature ; Grain size ; Iron ; Magnetic domains ; Magnetic permeability ; Magnetic properties ; magnetic property ; material degradation ; mechanical deformation ; Metallic glasses ; Pattern analysis</subject><ispartof>Journal of the Japan Institute of Metals and Materials, 2007, Vol.71(7), pp.553-558</ispartof><rights>2007 The Japan Institute of Metals and Materials</rights><rights>Copyright Japan Science and Technology Agency 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2713-d9251d33ef9484e3ec119fb9db3f261c6e1329b1fc0536ca21d31a74b55a67a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Hashimoto, Kenji</creatorcontrib><creatorcontrib>Kubota, Takeshi</creatorcontrib><creatorcontrib>Mashiko, Tuyoshi</creatorcontrib><creatorcontrib>Okazaki, Teiko</creatorcontrib><creatorcontrib>Furuya, Yasubumi</creatorcontrib><creatorcontrib>Inoue, Akihisa</creatorcontrib><title>Influence of Mechanical Deformation at Tg on the Magnetic Properties in Fe-Based Bulk Metallic Glassy (FeCoZrMoWB) Alloy</title><title>Journal of the Japan Institute of Metals and Materials</title><addtitle>J. Japan Inst. Metals and Materials</addtitle><description>Mechanical deformation effect on the magnetic properties in a bulk metallic glass (BMG) Fe60Co8Zr10Mo5W2B15 alloy at its glass transition temperature (Tg) was studied to investigate the possibility of some influence on the micro, nano-structure and magnetic properties of Fe-based BMG. Three different mechanical strains of 5, 10 and 20% were applied to specimens at Tg (=882 K). From the results by vibrating sample magnetometer (VSM) measurement, magnetic susceptibility (χ) and coercive force (Hc) were low in as-cast material, on the other hand, in the samples after strains of 10% and 20%, both χ and Hc increased very much. Transmission electron microscope (TEM) observation shows that very small crystalline precipitations with grain size of several nm order appeared and it's volume fraction gradually increases in the deformed samples. The morphological change seen in the selected area electron diffraction (SAED) pattern was well agreed with the changing tendency of the X-ray diffraction (XRD) analysis. Barkhausen noise (BHN) pulse voltage which is directly related to the dynamic behavior (i.e. magnetic pinning effect) of magnetic domains' movements increased with increasing the strain and BHN outbreak timing moved to higher magnetization level. These behaviors seem to correspond with the increase in Hc and χ. Therefore, a suitable deformation conditions (i.e. the amount of strain and temperature) at Tg should be chosen to maintain the excellent magnetic characteristics in Fe-BMG.</description><subject>Amorphous materials</subject><subject>Barkhausen effect</subject><subject>Barkhausen noise (BHN)</subject><subject>bulk metallic glass</subject><subject>Coercivity</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Diffraction patterns</subject><subject>Electron diffraction</subject><subject>Glass transition temperature</subject><subject>Grain size</subject><subject>Iron</subject><subject>Magnetic domains</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>magnetic property</subject><subject>material degradation</subject><subject>mechanical deformation</subject><subject>Metallic glasses</subject><subject>Pattern analysis</subject><issn>0021-4876</issn><issn>1880-6880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkUFrGzEQhUVJISbJuVdBoSSHdaTVrrR7jJ04DcS0h4RCLkIrjxy5suRIWoj_fRTcBtrLzMB87zHMQ-gLJdOa1eRyY33KW8hTQadtyz6hCe06UvFSjtCEkJpWTSf4MTpLyQ6EkJ5TTvoJer3zxo3gNeBg8BL0s_JWK4evwYS4VdkGj1XGD2tchvwMeKnWHrLV-GcMO4jZQsLW4wVUM5VghWej-12MsnKuQLdOpbTH5wuYh6e4DL9mF_jKubA_RZ-NcgnO_vQT9Li4eZh_r-5_3N7Nr-4rXQvKqlVft3TFGJi-6RpgoCntzdCvBmZqTjUHyup-oEaTlnGt6gJTJZqhbRUXqmMn6NvBdxfDywgpy61NGpxTHsKYJCOEc96wAn79D9yEMfpym6QNE5yJriGFujxQOoaUIhi5i3ar4l5SIt-jkH-jkILKEkVRXB8Um5TVGj54VV6nHfzDi0Mpso91CSRK8OwNQryWZw</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hashimoto, Kenji</creator><creator>Kubota, Takeshi</creator><creator>Mashiko, Tuyoshi</creator><creator>Okazaki, Teiko</creator><creator>Furuya, Yasubumi</creator><creator>Inoue, Akihisa</creator><general>The Japan Institute of Metals and Materials</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200707</creationdate><title>Influence of Mechanical Deformation at Tg on the Magnetic Properties in Fe-Based Bulk Metallic Glassy (FeCoZrMoWB) Alloy</title><author>Hashimoto, Kenji ; Kubota, Takeshi ; Mashiko, Tuyoshi ; Okazaki, Teiko ; Furuya, Yasubumi ; Inoue, Akihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2713-d9251d33ef9484e3ec119fb9db3f261c6e1329b1fc0536ca21d31a74b55a67a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2007</creationdate><topic>Amorphous materials</topic><topic>Barkhausen effect</topic><topic>Barkhausen noise (BHN)</topic><topic>bulk metallic glass</topic><topic>Coercivity</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Diffraction patterns</topic><topic>Electron diffraction</topic><topic>Glass transition temperature</topic><topic>Grain size</topic><topic>Iron</topic><topic>Magnetic domains</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>magnetic property</topic><topic>material degradation</topic><topic>mechanical deformation</topic><topic>Metallic glasses</topic><topic>Pattern analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Kenji</creatorcontrib><creatorcontrib>Kubota, Takeshi</creatorcontrib><creatorcontrib>Mashiko, Tuyoshi</creatorcontrib><creatorcontrib>Okazaki, Teiko</creatorcontrib><creatorcontrib>Furuya, Yasubumi</creatorcontrib><creatorcontrib>Inoue, Akihisa</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Japan Institute of Metals and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Kenji</au><au>Kubota, Takeshi</au><au>Mashiko, Tuyoshi</au><au>Okazaki, Teiko</au><au>Furuya, Yasubumi</au><au>Inoue, Akihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Mechanical Deformation at Tg on the Magnetic Properties in Fe-Based Bulk Metallic Glassy (FeCoZrMoWB) Alloy</atitle><jtitle>Journal of the Japan Institute of Metals and Materials</jtitle><addtitle>J. Japan Inst. Metals and Materials</addtitle><date>2007-07</date><risdate>2007</risdate><volume>71</volume><issue>7</issue><spage>553</spage><epage>558</epage><pages>553-558</pages><issn>0021-4876</issn><eissn>1880-6880</eissn><abstract>Mechanical deformation effect on the magnetic properties in a bulk metallic glass (BMG) Fe60Co8Zr10Mo5W2B15 alloy at its glass transition temperature (Tg) was studied to investigate the possibility of some influence on the micro, nano-structure and magnetic properties of Fe-based BMG. Three different mechanical strains of 5, 10 and 20% were applied to specimens at Tg (=882 K). From the results by vibrating sample magnetometer (VSM) measurement, magnetic susceptibility (χ) and coercive force (Hc) were low in as-cast material, on the other hand, in the samples after strains of 10% and 20%, both χ and Hc increased very much. Transmission electron microscope (TEM) observation shows that very small crystalline precipitations with grain size of several nm order appeared and it's volume fraction gradually increases in the deformed samples. The morphological change seen in the selected area electron diffraction (SAED) pattern was well agreed with the changing tendency of the X-ray diffraction (XRD) analysis. Barkhausen noise (BHN) pulse voltage which is directly related to the dynamic behavior (i.e. magnetic pinning effect) of magnetic domains' movements increased with increasing the strain and BHN outbreak timing moved to higher magnetization level. These behaviors seem to correspond with the increase in Hc and χ. Therefore, a suitable deformation conditions (i.e. the amount of strain and temperature) at Tg should be chosen to maintain the excellent magnetic characteristics in Fe-BMG.</abstract><cop>Sendai</cop><pub>The Japan Institute of Metals and Materials</pub><doi>10.2320/jinstmet.71.553</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4876 |
ispartof | Journal of the Japan Institute of Metals and Materials, 2007, Vol.71(7), pp.553-558 |
issn | 0021-4876 1880-6880 |
language | eng ; jpn |
recordid | cdi_proquest_miscellaneous_30066643 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amorphous materials Barkhausen effect Barkhausen noise (BHN) bulk metallic glass Coercivity Deformation Deformation effects Diffraction patterns Electron diffraction Glass transition temperature Grain size Iron Magnetic domains Magnetic permeability Magnetic properties magnetic property material degradation mechanical deformation Metallic glasses Pattern analysis |
title | Influence of Mechanical Deformation at Tg on the Magnetic Properties in Fe-Based Bulk Metallic Glassy (FeCoZrMoWB) Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Mechanical%20Deformation%20at%20Tg%20on%20the%20Magnetic%20Properties%20in%20Fe-Based%20Bulk%20Metallic%20Glassy%20(FeCoZrMoWB)%20Alloy&rft.jtitle=Journal%20of%20the%20Japan%20Institute%20of%20Metals%20and%20Materials&rft.au=Hashimoto,%20Kenji&rft.date=2007-07&rft.volume=71&rft.issue=7&rft.spage=553&rft.epage=558&rft.pages=553-558&rft.issn=0021-4876&rft.eissn=1880-6880&rft_id=info:doi/10.2320/jinstmet.71.553&rft_dat=%3Cproquest_cross%3E30066643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437637840&rft_id=info:pmid/&rfr_iscdi=true |