A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)
Spearman (Am J Psychol 15(1):201–293, 1904. https://doi.org/10.2307/1412107 ) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation...
Gespeichert in:
Veröffentlicht in: | Psychometrika 2024-06, Vol.89 (2), p.687-716 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 716 |
---|---|
container_issue | 2 |
container_start_page | 687 |
container_title | Psychometrika |
container_volume | 89 |
creator | Bollen, Kenneth A. Gates, Kathleen M. Luo, Lan |
description | Spearman (Am J Psychol 15(1):201–293, 1904.
https://doi.org/10.2307/1412107
) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation, and distinguishing between confirmatory and exploratory factor analysis (CFA and EFA). We propose a new model implied instrumental variable (MIIV) approach to EFA that allows intercepts for the measurement equations, correlated common factors, correlated errors, standard errors of factor loadings and measurement intercepts, overidentification tests of equations, and a procedure for determining the number of factors. We also permit simpler structures by removing nonsignificant loadings. Simulations of factor analysis models with and without cross-loadings demonstrate the impressive performance of the MIIV-EFA procedure in recovering the correct number of factors and in recovering the primary and secondary loadings. For example, in nearly all replications MIIV-EFA finds the correct number of factors when
N
is 100 or more. Even the primary and secondary loadings of the most complex models were recovered when the sample sizes were at least 500. We discuss limitations and future research areas. Two appendices describe alternative MIIV-EFA algorithms and the sensitivity of the algorithm to cross-loadings. |
doi_str_mv | 10.1007/s11336-024-09949-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3003441094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003441094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e8b9fb7be4a55d0b3712cad57467e7ed812aa0bf3f28fc3606b459b1a74bd84f3</originalsourceid><addsrcrecordid>eNp9kEtP3TAQRi1EBZfHH2CBLLGBRcr4EcdeRuheiATqpiB2lp04NMh5YCdS77-v4dJW6qKr0WjOfDM6CJ0R-EoAiutICGMiA8ozUIqrTOyhFZECUithH60AGMsYoewQHcX4CgCKSHmADpnMGaVUrdBziR_Gxnlc9ZPvXIOrIc5h6d0wG4-fTOiM9Q6X0xRGU__A84jXPyc_BjOPYYs3pk4Vl4Px29hFfPlQVU_ZelNenaAvrfHRnX7WY_S4WX-_ucvuv91WN-V9VjMq5sxJq1pbWMdNnjdgWUFobZq84KJwhWskocaAbVlLZVszAcLyXFliCm4byVt2jC53uenBt8XFWfddrJ33ZnDjEjVLEjgnoHhCL_5BX8clpNffKSGIyJUsEkV3VB3GGINr9RS63oStJqDfveudd5286w_vWqSl88_oxfau-bPyW3QC2A6IaTS8uPD39n9ifwG1IIxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066165987</pqid></control><display><type>article</type><title>A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Bollen, Kenneth A. ; Gates, Kathleen M. ; Luo, Lan</creator><creatorcontrib>Bollen, Kenneth A. ; Gates, Kathleen M. ; Luo, Lan</creatorcontrib><description>Spearman (Am J Psychol 15(1):201–293, 1904.
https://doi.org/10.2307/1412107
) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation, and distinguishing between confirmatory and exploratory factor analysis (CFA and EFA). We propose a new model implied instrumental variable (MIIV) approach to EFA that allows intercepts for the measurement equations, correlated common factors, correlated errors, standard errors of factor loadings and measurement intercepts, overidentification tests of equations, and a procedure for determining the number of factors. We also permit simpler structures by removing nonsignificant loadings. Simulations of factor analysis models with and without cross-loadings demonstrate the impressive performance of the MIIV-EFA procedure in recovering the correct number of factors and in recovering the primary and secondary loadings. For example, in nearly all replications MIIV-EFA finds the correct number of factors when
N
is 100 or more. Even the primary and secondary loadings of the most complex models were recovered when the sample sizes were at least 500. We discuss limitations and future research areas. Two appendices describe alternative MIIV-EFA algorithms and the sensitivity of the algorithm to cross-loadings.</description><identifier>ISSN: 0033-3123</identifier><identifier>ISSN: 1860-0980</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-024-09949-6</identifier><identifier>PMID: 38532229</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Assessment ; Behavioral Science and Psychology ; Computer Simulation ; Discriminant analysis ; Disproportionate Representation ; Factor analysis ; Factor Analysis, Statistical ; Humanities ; Humans ; Law ; Models, Statistical ; Psychology ; Psychometrics ; Statistical Theory and Methods ; Statistics for Social Sciences ; Testing and Evaluation ; Theory & Methods</subject><ispartof>Psychometrika, 2024-06, Vol.89 (2), p.687-716</ispartof><rights>The Author(s), under exclusive licence to The Psychometric Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to The Psychometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-e8b9fb7be4a55d0b3712cad57467e7ed812aa0bf3f28fc3606b459b1a74bd84f3</cites><orcidid>0000-0002-6710-3800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-024-09949-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-024-09949-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38532229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bollen, Kenneth A.</creatorcontrib><creatorcontrib>Gates, Kathleen M.</creatorcontrib><creatorcontrib>Luo, Lan</creatorcontrib><title>A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Spearman (Am J Psychol 15(1):201–293, 1904.
https://doi.org/10.2307/1412107
) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation, and distinguishing between confirmatory and exploratory factor analysis (CFA and EFA). We propose a new model implied instrumental variable (MIIV) approach to EFA that allows intercepts for the measurement equations, correlated common factors, correlated errors, standard errors of factor loadings and measurement intercepts, overidentification tests of equations, and a procedure for determining the number of factors. We also permit simpler structures by removing nonsignificant loadings. Simulations of factor analysis models with and without cross-loadings demonstrate the impressive performance of the MIIV-EFA procedure in recovering the correct number of factors and in recovering the primary and secondary loadings. For example, in nearly all replications MIIV-EFA finds the correct number of factors when
N
is 100 or more. Even the primary and secondary loadings of the most complex models were recovered when the sample sizes were at least 500. We discuss limitations and future research areas. Two appendices describe alternative MIIV-EFA algorithms and the sensitivity of the algorithm to cross-loadings.</description><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Computer Simulation</subject><subject>Discriminant analysis</subject><subject>Disproportionate Representation</subject><subject>Factor analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Humanities</subject><subject>Humans</subject><subject>Law</subject><subject>Models, Statistical</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Testing and Evaluation</subject><subject>Theory & Methods</subject><issn>0033-3123</issn><issn>1860-0980</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP3TAQRi1EBZfHH2CBLLGBRcr4EcdeRuheiATqpiB2lp04NMh5YCdS77-v4dJW6qKr0WjOfDM6CJ0R-EoAiutICGMiA8ozUIqrTOyhFZECUithH60AGMsYoewQHcX4CgCKSHmADpnMGaVUrdBziR_Gxnlc9ZPvXIOrIc5h6d0wG4-fTOiM9Q6X0xRGU__A84jXPyc_BjOPYYs3pk4Vl4Px29hFfPlQVU_ZelNenaAvrfHRnX7WY_S4WX-_ucvuv91WN-V9VjMq5sxJq1pbWMdNnjdgWUFobZq84KJwhWskocaAbVlLZVszAcLyXFliCm4byVt2jC53uenBt8XFWfddrJ33ZnDjEjVLEjgnoHhCL_5BX8clpNffKSGIyJUsEkV3VB3GGINr9RS63oStJqDfveudd5286w_vWqSl88_oxfau-bPyW3QC2A6IaTS8uPD39n9ifwG1IIxK</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Bollen, Kenneth A.</creator><creator>Gates, Kathleen M.</creator><creator>Luo, Lan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6710-3800</orcidid></search><sort><creationdate>20240601</creationdate><title>A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)</title><author>Bollen, Kenneth A. ; Gates, Kathleen M. ; Luo, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e8b9fb7be4a55d0b3712cad57467e7ed812aa0bf3f28fc3606b459b1a74bd84f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Computer Simulation</topic><topic>Discriminant analysis</topic><topic>Disproportionate Representation</topic><topic>Factor analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Humanities</topic><topic>Humans</topic><topic>Law</topic><topic>Models, Statistical</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Testing and Evaluation</topic><topic>Theory & Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bollen, Kenneth A.</creatorcontrib><creatorcontrib>Gates, Kathleen M.</creatorcontrib><creatorcontrib>Luo, Lan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bollen, Kenneth A.</au><au>Gates, Kathleen M.</au><au>Luo, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA)</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>89</volume><issue>2</issue><spage>687</spage><epage>716</epage><pages>687-716</pages><issn>0033-3123</issn><issn>1860-0980</issn><eissn>1860-0980</eissn><abstract>Spearman (Am J Psychol 15(1):201–293, 1904.
https://doi.org/10.2307/1412107
) marks the birth of factor analysis. Many articles and books have extended his landmark paper in permitting multiple factors and determining the number of factors, developing ideas about simple structure and factor rotation, and distinguishing between confirmatory and exploratory factor analysis (CFA and EFA). We propose a new model implied instrumental variable (MIIV) approach to EFA that allows intercepts for the measurement equations, correlated common factors, correlated errors, standard errors of factor loadings and measurement intercepts, overidentification tests of equations, and a procedure for determining the number of factors. We also permit simpler structures by removing nonsignificant loadings. Simulations of factor analysis models with and without cross-loadings demonstrate the impressive performance of the MIIV-EFA procedure in recovering the correct number of factors and in recovering the primary and secondary loadings. For example, in nearly all replications MIIV-EFA finds the correct number of factors when
N
is 100 or more. Even the primary and secondary loadings of the most complex models were recovered when the sample sizes were at least 500. We discuss limitations and future research areas. Two appendices describe alternative MIIV-EFA algorithms and the sensitivity of the algorithm to cross-loadings.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38532229</pmid><doi>10.1007/s11336-024-09949-6</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6710-3800</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 2024-06, Vol.89 (2), p.687-716 |
issn | 0033-3123 1860-0980 1860-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_3003441094 |
source | MEDLINE; SpringerNature Journals |
subjects | Algorithms Assessment Behavioral Science and Psychology Computer Simulation Discriminant analysis Disproportionate Representation Factor analysis Factor Analysis, Statistical Humanities Humans Law Models, Statistical Psychology Psychometrics Statistical Theory and Methods Statistics for Social Sciences Testing and Evaluation Theory & Methods |
title | A Model Implied Instrumental Variable Approach to Exploratory Factor Analysis (MIIV-EFA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20Implied%20Instrumental%20Variable%20Approach%20to%20Exploratory%20Factor%20Analysis%20(MIIV-EFA)&rft.jtitle=Psychometrika&rft.au=Bollen,%20Kenneth%20A.&rft.date=2024-06-01&rft.volume=89&rft.issue=2&rft.spage=687&rft.epage=716&rft.pages=687-716&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-024-09949-6&rft_dat=%3Cproquest_cross%3E3003441094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066165987&rft_id=info:pmid/38532229&rfr_iscdi=true |